首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
In early 1990 a modified JMR-1 satellite receiver system was installed at Casey Station, Antarctica (g.g. 66.28°S, 110.54° E, -80.4°A, magnetic midnight 1816UT, L = 37.8), in order to monitor the differential phase between the 150 and 400 MHz signals from polar orbiting NNSS satellites. Total electron content (TEC) was calculated using the differential phase and Casey ionosonde foF2 data, and is presented here for near sunspot maximum in August 1990 and exactly one year later. The data are used to investigate long-lived ionization enhancements at invariant latitudes polewards of − 80° A, and the ‘polar hole’, a region from −70 to − 80° A on the nightside of the polar cap where reduced electron densitiy exists because of the long transport time of plasma from the dayside across the polar cap. A comparison is made between the Casey TEC data and the Utah State University Time Dependent Ionospheric Model (TDIM) which uses as variables the solar index (F 10.7), season (summer, winter or equinox), global magnetic index (Kp), IMF By direction, and universal time (UT) [sojkaet al. (1991) Adv. Space Res.11(10), 39].  相似文献   

2.
Long term remote observations of neutral winds at F-region altitudes have been performed at Thule Air Base (lat. 76.5°N, long. 69.0°W), Greenland, and Søndre Strømfjord (lat. 67.0°N, long. 50.9°W), Greenland. The former site is very close to the geomagnetic pole, while the latter site is within the polar cap for several hours each night on either side of geomagnetic midnight. Wind data corresponding to clear sky conditions and Kp ⩽ 4 were sorted according to the sign of the IMF Bz component. The averaged maximum poleward flow near midnight LST was reduced by approximately one third during Bz northward conditions. If the magnitude of By was less than the magnitude of the northward Bz component, then the averaged poleward flow was further reduced by one half. In addition, if Bz > 5 nT, then sunward directed horizontal neutral winds were observed at the very highest latitudes near noon LST.  相似文献   

3.
Changes in total electron content during magnetic storms are compared at stations with similar geographic and geomagnetic latitudes and eastward declinations in the northern and southern hemispheres.Mean patterns are obtained from 58 storms at ±35° and 28 storms at ± 20° latitude. The positive storm phase is generally larger (and earlier) in the southern hemisphere, while negative storm effects are larger in the north. These changes reduce the normal asymmetry in TEC between the two hemispheres. Composition changes calculated from the MSIS86 atmospheric model agree well with the maximum decreases in TEC in both seasons (when changes in the F-layer height are ignored). Recovery occurs with a time constant of about 35 h; this is 50% longer than in the MSIS86 model. There is a marked diurnal variation at 35°S, with a rapid overnight decay and enhanced values of TEC in the afternoon. This pattern is inverted (and weaker) at 35°N, where night-time decay is consistently slower than on undisturbed nights. These results require a diurnal change in composition of opposite sign in the two hemispheres, or enhanced westward winds at night changing to eastward near sunrise. There is some evidence for both these mechanisms. Following a night-time sudden commencement there is a large annual effect with daytime TEC increasing for storms near the June solstice and decreasing near December. Storms occurring between November and April tend to give large, irregular increases in TEC for several days, particularly at low latitudes. In summer and winter at both stations, the mean size of the negative phase does not increase for storms with Kp> 6. The size of the positive phase is proportional to the size of the change in ap in winter, while in summer a positive phase is seen only for the larger storms.  相似文献   

4.
The flux of ionisation at 850 km height is calculated using the MSIS atmospheric model, a simplified form for the continuity equation at the peak of the F2-layer, and observed values of NmF2. Results are given for stations at latitudes of 32°N, 21°N, 21°S and 37°S during 1971 and for Tahiti (18°S) in 1980. Changes in the neutral atmosphere and in the hmF2 model have minor effects at low latitudes, where the fluxes are larger, but can appreciably alter the results at mid latitudes. Increased recombination due to N2 vibrational excitation produces a large afternoon decrease in NmF2 in summer, near solar maximum, and an increased downward flux. At all stations the day-time flux has a much larger downward component in winter than in summer. Because of the eastward magnetic declination, zonal winds produce opposite effects on the diurnal variations of hmF2, NmF2 and flux in the northern and southern hemispheres. Downward fluxes are largest in the morning in the southern hemisphere and in the late afternoon and evening in the north. At ± 21° latitude, neutral winds have a major effect on the distribution of ionisation from the equatorial fountain. Thus, at the solstices the day-time flow is about 4 times larger in winter than in summer. Averaged over both hemispheres, the total flow at 21° latitude is approximately the same for solstice and equinox conditions. At mid latitudes there is a downwards flux of about 1–2 × 1012 m2 s−1 into the night ionosphere.  相似文献   

5.
6.
Whistler-mode signals observed at Faraday, Antarctica (65° S, 64° W, Λ=50.8°) show anomalous changes in group delay and Doppler shift with time during the main phase of intense geomagnetic activity. These changes are interpreted as the effect of refracting signals into and out of ducts near L=2.5 by electron concentration gradients associated with edges of the mid-latitude ionospheric trough. The refraction region is observed to propagate equatorwards at velocities in the range 20–85 ms−1 during periods of high geomagnetic activity (Kp ≥ 5), which is in good agreement with typical trough velocities. Model estimates of the time that the trough edges come into view from Faraday show a good correlation with the observed start times of the anomalous features. Whistler-mode signals observed at Dunedin, New Zealand (46° S, 171° E, Λ=52.5°) that have propagated at an average L-shell of 2.2 (Λ=47.6°) do not show such trough-related changes in group delay. These observations are consistent with a lower occurrence of the trough at lower invariant latitudes.  相似文献   

7.
The annual variation of the daytime F2-layer peak electron density (NmF2) is studied at two low latitude stations, Okinawa and Tahiti (geomagnetic latitudes ± 15°) for the sunspot maximum years 1979–1981. Observed values are compared with those calculated using the MSIS model and a simplified version of the continuity equation for day-time equilibrium conditions. Summer-winter differences imply an intensification of the fountain effect on the winter side of the equator at the expense of the summer side. This could be explained by a summer to winter neutral wind. Semi-annual variations, however, appear to be mainly due to changes in neutral composition.  相似文献   

8.
The dynamics and structure of the polar thermosphere and ionosphere within the polar regions are strongly influenced by the magnetospheric electric field. The convection of ionospheric plasma imposed by this electric field generates a large-scale thermospheric circulation which tends to follow the pattern of the ionospheric circulation itself. The magnetospheric electric field pattern is strongly influenced by the magnitude and direction of the interplanetary magnetic field (IMF), and by the dynamic pressure of the solar wind. Previous numerical simulations of the thermospheric response to magnetospheric activity have used available models of auroral precipitation and magnetospheric electric fields appropriate for a southward-directed IMF. In this study, the UCL/Sheffield coupled thermosphere/ionosphere model has been used, including convection electric field models for a northward IMF configuration. During periods of persistent strong northward IMF Bz, regions of sunward thermospheric winds (up to 200 m s−1) may occur deep within the polar cap, reversing the generally anti-sunward polar cap winds driven by low-latitude solar EUV heating and enhanced by geomagnetic forcing under all conditions of southward IMF Bz. The development of sunward polar cap winds requires persistent northward IMF and enhanced solar wind dynamic pressure for at least 2–4 h, and the magnitude of the northward IMF component should exceed approximately 5 nT. Sunward winds will occur preferentially on the dawn (dusk) side of the polar cap for IMF By negative (positive) in the northern hemisphere (reverse in the southern hemisphere). The magnitude of sunward polar cap winds will be significantly modulated by UT and season, reflecting E-and F-region plasma densities. For example, in northern mid-winter, sunward polar cap winds will tend to be a factor of two stronger around 1800 UT, when the geomagnetic polar cusp is sunlit, then at 0600 UT, when the entire polar cap is in darkness.  相似文献   

9.
An observational study of the D-region winter anomaly of HF radio wave absorption in lower latitudes has been made during the period of a sudden stratospheric warming of the 1967/1968 winter. By means of large-scale isopleth analysis of the absorption index, ƒmin, and of meridional winds near 70 km height along 60°N, it is found that there exists a winter anomaly in lower latitudes which is comparable in order to that in middle latitudes, resulting from a nitric oxide (NO) increase due to southward transport from higher latitudes by well-developed planetary wave winds. From the daily changes of absorption in the equatorial region, it is found that the enhanced absorption reveals an oscillation with a period of about 2 weeks and has its maximum in the region south of 20°N. The period is similar to that of planetary wave amplitudes in the winter stratosphere and mesosphere, suggesting that an effect of planetary waves could contribute to the equatorial anomaly of the absorption in the D-region.  相似文献   

10.
A polar map of the occurrence rate of broad-band auroral VLF hiss in the topside ionosphere was made by a criterion of simultaneous intensity increases more than 5 dB above the quiet level at 5, 8, 16 and 20 kHz bands, using narrow-band intensity data processed from VLF electric field (50 Hz–30 kHz) tapes of 347 ISIS passes received at Syowa Station, Antarctica, between June 1976 and January 1983.The low-latitude contour of occurrence rate of 0.3 is approximately symmetric with respect to the 10–22 MLT (geomagnetic local time) meridian. It lies at 74° around 10 MLT, and extends down to 67° around 22 MLT. The high-latitude contour of 0.3 lies at invariant latitude of about 82° for all geomagnetic local times. The polar occurrence map of broad-band auroral VLF hiss is qualitatively similar to that of inverted-V electron precipitation observed by Atmospheric Explorer.(AE-D) (Huffman and Lin, 1981, American Geophys. Union, Geophysics Monograph, No. 25, p. 80), especially concerning the low-latitude boundary and axial symmetry of the 10–22 h MLT meridian.The frequency range of the broad-band auroral VLF hiss is discussed in terms of whistler Aode Cerenkov radiation by inverted-V electrons (1–30 keV) precipitated from the boundary plasma sheet. High-frequency components, above 12 kHz of whistler mode Cerenkov radiation from inverted-V electrons with energy below 40 keV, may be generated at altitudes below 3200 km along geomagnetic field lines at invariant latitudes between 70 and 77°. Low-frequency components below 2 kHz may be generated over a wide region at altitudes below 6400 km along the same field lines. Thus, the frequency range of the downgoing broad-band auroral hiss seems to be explained by the whistler mode Cerenkov radiation generated from inverted-V electrons at geocentric distances below about 2 RE (Earth's radius) along polar geomagnetic field lines of invariant latitude from 70 to 77°, since the whistler mode condition for all frequencies above 1 kHz of the downgoing hiss is not satisfied at geocentric distance of 3 re on the same field lines.  相似文献   

11.
In order to investigate the particles which produce the polar cap aurora at the Vostok station in Antarctica, charged particle data obtained by the DMSP satellites for some days in a period from April to August 1985 were surveyed. Due to the satellite orbit the local time range in which the data were available was the morning sector. For all the events when sun-aligned arcs were observed on the ground the simultaneous DMSP measurements on almost the same field line showed an increased integral number flux J. > 108 (cm8/s/sr)−1 of the precipitating electrons with energy Ee > 200 eV. The electron spectra with double peaks are typical of intense electron precipitation in the polar cap arcs. The most noticeable feature of ion spectra in the polar cap arcs is the prominent minimum in ion flux in the energy range 0.1 < Ei < 1 keV in contrast with the oval precipitation ; this feature gives the possibility to separate the polar arcs from the aurora in the oval. In some events the satellite crossed the system of two widely separated arcs ; one of them was a sun-aligned arc whereas the other was circular at constant latitude according to the Vostok data. The analysis of the DMSP electron and ion precipitation data has shown that in these events the latitude-oriented arcs are located in the polar cap and not in the auroral oval.  相似文献   

12.
An array of four low latitude induction coil magnetometer stations has been used to study the spatial and temporal characteristics of Pc3 pulsations over a longitudinal range of 17° at L = 1.8 to 2.7 in southeast Australia. A preliminary study of individual Pc3 wave packet structure at the azimuthal stations has established the existence of phase jumps between wave packets at low latitudes, similar to those observed at synchronous orbit and at higher latitude ground stations. However, there did not appear to be any obvious pattern in phase jump occurrences between stations or signal components.  相似文献   

13.
Measurements of precipitating particles on board DMSP F7 spacecraft are used to analyze the distribution of ionospheric conductance in the midnight auroral zone during substorms. The distribution is compared with the meridional profile of ionospheric currents calculated from magnetic data from the Kara meridional chain. Two regions of high Hall conductance are found; one of them is the traditional auroral zone, at latitudes 64–68°, and the other is a narrow band at latitudes 70–73°. The position of high conductance zones is in agreement with the location of the intense westward currents. The accelerated particle population is typical of electrons Ee > 5 keV in the high conductance region.  相似文献   

14.
Winds and tides were measured by a number of MLT (Mesosphere, Lower Thermosphere) radars with locations varying from 43–70°N, 35–68°S, during the first LTCS (Lower Thermosphere Coupling Study) Campaign, 21–25 September 1987. The mean winds were globally westerly, consistent with early winter-like (NH) and late winter (SH) circulations.The semi-diurnal tide had vertical wavelengths near or less than 100 km at most locations, with some latitudinal variation (longer/shorter at lower latitudes in the NH/SH)—amplitudes decreased at high latitudes. The global tide was closer to anti-symmetric, with northward components being in phase at 90 km. Numerical model calculations [Forbes and Vial (1989), J. atmos. lerr. Phys. 51, 649] for September have rather similar wavelengths and amplitudes; however, the global tide was closer to symmetric, and detailed latitudinal trends differed from observed.The diurnal tide had similar wavelengths in each hemisphere, with short values (~30 km) at 35°, long (evanescence) at 68–70°, and irregular phase structures at mid-latitudes. The tide was neither symmetric nor anti-symmetric. Model calculations for the equinox [Forbes. S and Hagan (1988), Planet. Space Sci. 36, 579] were by nature symmetric, and showed the short wavelengths extending to mid-latitudes (43–52°). Southern hemisphere phases were significantly (6–8 h) different from observations. Amplitudes decreased at high latitudes in model and observation profiles.  相似文献   

15.
It is possible to form images of the tropical F-region ionization structures, variously labelled as ‘bubbles’, ‘plumes’, or ‘depletions’, in a plane perpendicular to the magnetic field by observing the airglow emissions associated with them in a field aligned direction. Structures which are present at altitudes from 250 km to more than 700 km above the dip equator map down to the 250–350 km region, where recombination and associated airglow emissions occur, ranging from the equator to dip latitudes of 15° or more. The structures can be viewed in a field aligned direction from sites in the range 17°–23° dip latitude. Measurements with high angular resolution (as small as 0.1° in the meridian) could show structures as small as 2 km. It is possible to make simultaneous measurements in both 6300 and 7774 Å recombination emissions, from which the height hmax of the peak plasma concentration n(e)max on the field line can be estimated from a ratio of the emission rates. It is possible to make maps of n(e)max and hmax either by raster scanning the sky in the two emissions or by imaging them onto an imaging detector. Useful data can be obtained from one site over a range of 20° in dip latitude and 10° in dip longitude. Observations in the same magnetic meridian as a backscatter radar system are desirable, as also are observations from near magnetic conjugate points. Imaging characteristics for the observation sites in the range of dip latitude 17°–23° have been calculated.  相似文献   

16.
The feasibility of using the GOES satellite time signal is discussed for field stations at high Arctic latitudes. Results are presented for three ground stations on islands in the Canadian Archipelago. The stations range in latitude from 74 to 81° 30' N. At all locations, time code reception was found to be satisfactory and capable of providing accurate time reference for remote experiments. A simple design for a high gain helical antenna, used successfully at these latitudes for time signal reception, is also presented. The antenna, primarily intended for a small research field station, is portable, inexpensive and readily constructed.  相似文献   

17.
A high frequency radio Doppler experiment was deployed in the Antarctic Peninsula region, centred on Argentine Islands (65°15′S, 64°16′W; L = 2.3), to investigate the morphology and sources of ionospheric disturbances. The experiment consisted of a three-transmitter dual frequency network which permits horizontal and vertical propagation velocities to be estimated over a north-south baseline of 200 km and an east-west baseline of 100 km.A new class of ionospheric disturbance has been observed, in the period range 10 min−1 h. These disturbances are characterised by unusually good correlation between perturbations on all available Doppler signals, but are apparently non—propagating and occur simultaneously at each reflection point. Several of these events display large (2 Hz at about 5 MHz transmitted frequency) Doppler shifts, thus we have labelled them Large Simultaneous Disturbances (LSDs).Criteria for identification of LSDs are established and the analysis of one event is described in detail. The occurrence statistics of the LSDs are presented, including their seasonal and diurnal distributions.There is no clear general relationship between LSDs and local geomagnetic field perturbations. However, examination of the magnetic indices AE and IRC indicates that there is a loose association between the occurrence and amplitude of LSDs and magnetic activity.Several possible mechanisms for the generation of LSDs at middle latitudes are reviewed. The most likely explanation is that high latitude electric fields penetrate to magnetic middle latitudes and drive the ionospheric plasma via the E × B drift.  相似文献   

18.
In the geometrical optics approximation, a synthesis oblique ionogram of ionospheric and magnetospheric HF radio wave signals propagating between magnetic conjugate points has been carried out. The magnetospheric HF propagation is considered for a model of the waveguide formed by field-aligned irregularities with depleted electron density. The characteristic peculiarities of the magnetospheric mode have been determined: (i) strong disperion of the group delay with a frequency at 14–18 MHz, from − 1.4 to 0.6 ms/MHz for magnetically conjugate points at geomagnetic latitudes φ = 30°, 40° and 50°, respectively, (ii) spreading ∼ 1–2 ms, and (iii) a possibility of propagation between magnetic conjugates points at moderately low geomagnetic latitudes φ0 ∼ 30–40° at frequencies exceeding 1.5 times the maximum usable frequency (MUF) of multi-hop ionospheric propagation.  相似文献   

19.
The effect of the midday recovery of absorption (MDR) during the polar cap absorption (PCA) of 19–21 March 1990 is investigated using data from 25 riometer stations in both hemispheres. The measured variations of absorption are compared with those calculated from a model. Three main aspects are considered:
  • 1.(1) The solar and geophysical conditions under which the effect appears,
  • 2.(2) The essential morphological features of the phenomenon,
  • 3.(3) The relative contributions of (a) diurnal variations in the geomagnetic cut-off energy and (b) an anisotropic pitch-angle distribution of the solar protons to the development of the MDR.
The principal morphological features of the MDR effect are found to be as follows:
  • 1.(a) the width of the area affected by MDR is about 10° of invariant latitude,
  • 2.(b) there are two regions, respectively below and above 65° latitude, in which the MDR properties are different,
  • 3.(c) the maximum duration of the MDR effect is about 12 h,
  • 4.(d) there are distinct geomagnetic conjugucy effects in MDR.
There are solid reasons to suggest that the MDR at latitude 65–70° is due to the combined influence of a diurnal variation of geomagnetic rigidity, and the pitch-angle anisotropy of the solar protons. The MDR at lower latitudes (Λ = 60–65°) seems to be produced primarily by diurnal variations of the cut-off rigidity.  相似文献   

20.
Radar and radio measurements have provided detailed information on the dependence of F-region electrodynamic drifts on height, season, solar cycle and magnetic activity. Recently, satellite ion drift and electric field probes have determined the variation of low latitude ionospheric drifts over a large range of altitudes and latitudes. The general characteristics of the quiet time plasma can be explained as resulting from E- and F-region dynamo and interhemispheric coupling processes. The low latitude and equatorial zonal and upward/poleward components of the plasma drift respond differently to geomagnetic activity. Disturbance dynamo effects are responsible for the drift perturbations following periods of enhanced magnetic activity. The prompt penetration of high latitude electric fields to lower latitudes produces large perturbations on the upward/poleward drifts, but has no significant effect on the low latitude and equatorial zonal drifts. A number of processes such as ‘overshielding’, ‘fossil wind’ and magnetic reconfiguration were suggested as being responsible for the direct penetration of high latitude electric fields to lower latitudes. Detailed low latitude and global numerical models were used to study the characteristics of low latitude and equatorial plasma drifts and their response to changes in the polar cap potential drop or in the high latitude field-aligned currents. These models can reproduce the latitudinal variation of the perturbation electric fields and their diurnal variations, but are still unable to account for several aspects of the experimental data as a result of the complexity of the high latitude and magnetospheric processes involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号