首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
Electron density profiles in the night-time auroral ionosphere were obtained with the incoherent-scatter radar at Chatanika, Alaska, during short duration precipitation events characterized by riometer data as spike events. The measurements show exceptionally large electron densities in the D-region during spike events, the electron density typically exceeding 106 cm3 at 90 km altitude for a short time. The existence of a steep horizontal gradient, particularly on the poleward edge of the event, is inferred. The altitude and thickness of the absorbing layer are deduced. It is shown that 20–40 keV electrons make the greatest contribution to an absorption spike and that the spectrum of electrons producing such an event is probably softer than that producing a more slowly varying absorption peak. These absorption layers are too high for their altitudes to be measured by the technique of multi-frequency riometry.  相似文献   

2.
Carefully designed probes of the retarding potential analyzer (RPA) type allow electron temperatures to be correctly measured. When compared with incoherent scatter stations longitudinal structures sometimes appear.  相似文献   

3.
4.
The EISCAT measurements are based on the autocorrelation function technique. An alternative approach is to derive the ionospheric parameters from an estimate of the power spectrum for the received radar signal. We have used a nonlinear maximum entropy method to deduce parameters from the power spectrum of a generated signal. A comparison has been made with parameters obtained by the ACF method. This preliminary study suggests that the spectrum method could become useful, especially for determining the position of peaks in the incoherent scatter spectrum.  相似文献   

5.
The possibility of the generation of decameter scale ionospheric plasma density irregularities, that must be responsible for dusk scatter, by the plasma gradient drift instability (GDI) at F-region altitudes is considered. It is shown that the dusk scatter could be produced by the ion density perturbations which appear as a result of the development of the GDI produced by the maximum westward plasma drift in the region poleward of the trough minimum. Possible reasons for the appearance of growth of the GDI waves as a result of the development of the trough plasma GDI during or just after sunset in the F-region are discussed. It is shown that, if the GDI begins after sunset, then the influence of the drift velocity shear results in the action of the GDI during 1–2 hours after sunset, which is close to the duration of dusk scatter.  相似文献   

6.
7.
By comparing direct measurements taken from onboard Atmosphere Explorer spacecraft (AE), in eccentric orbit, with incoherent scatter radar (ISR) measurements taken from the ground, we illustrate both the merits and the difficulties involved in such comparisons. Five altitude profiles of ionization determined from AE, in near coincidence with ground stations making ISR measurements, compared favorably with the ISR data so long as the AE measurements were properly analyzed for the effects of variations in latitude and solar zenith angle along the spacecraft orbit.  相似文献   

8.
Measurements of winds in the mesosphere and lower thermosphere were carried out during the main phase of the MAP/WINE project in January and February 1984 with the EISCAT UHF incoherent scatter radar near Tromsö, Norway, and with meteorological rockets launched from the Andøya Rocket Range, Norway. The radar measurements yield wind profiles between the altitudes of about 80 km and 105 km and the rockets between about 60 km and 90 km. Results from both techniques are combined to yield mean profiles which are particularly evaluated in terms of tidal variations. It is found that the semidiurnal tide constitutes an essential wind contribution between 85 km and 105 km. Whereas the tidal amplitudes are below 5 m s−1 at about 80 km, they increase to 20–30 m s−1 at 100 km. The average vertical wavelength of 35 km points to the S42 mode, but coupling and superposition of different modes cannot be excluded.  相似文献   

9.
With the 430 MHz incoherent scatter radar facility at the Arecibo Observatory, the plasma line spectrum has been measured with a linearly frequency modulated or ‘chirped’ pulse. On reception the signal is demodulated (‘dechirped’). The paper describes the experimental set-up and the parameter estimation for day-time ionosphere observations. Using a non-linear least squares fit it is possible to determine the linear and quadratic coefficients of a locally parabolic plasma line frequency versus height profile. The strength of the plasma line and the point of tangency of the locally parabolic plasma line frequency profile can be determined very accurately. In measurements of the day-time ionosphere the plasma line was found to be enhanced by about 70 times over the thermal equilibrium level.  相似文献   

10.
A combined scientific and technical case is presented for the establishment of a new incoherent scatter radar facility on the archipelago of Svalbard. The scientific case rests principally on the ability of such a system to contribute significantly to the elucidation of the chain of physical processes involved in solar wind-magnetosphere-ionosphere-thermosphere coupling, particularly those processes associated with the dayside cusp and auroral zone. These latter regions map magnetically to the vicinity of the dayside magnetopause, and the consequent prospect of conducting co-ordinated observations with the ESA Cluster spacecraft at high altitudes provides strong motivation for ensuring that the radar facility becomes operational no later than 1995. Important features of the Svalbard site include its relatively high geographic latitude, which allows cusp aurorae to be observed under winter solstice conditions, and its proximity to the existing EISCAT incoherent scatter system, with the possibility of joint operations. The latter possibility is not only important for studies of the structure and motion of the high-latitude ionosphere, but is also particularly significant for plasma-physics investigations, which form another major topic of study. It is possible that the facility will be able to contribute significantly to polar stratospheric-tropospheric circulation studies relevant to the ozone-depletion problem. To accomplish these objectives, a tristatic radar system, capable of making full velocity vector measurements, would be ideal. However, the realization of such a system on the islands of Svalbard would present formidable logistic difficulties and an adequate alternative would be a system with three co-located fully steerable parabolic antennae, which could be operated either independently or together, in any combination. This configuration lends itself to a construction scheme that would allow significant observations to be made at an early stage with a partial radar system. The proposed construction scheme could be implemented by 1995 and would have sufficient flexibility to incorporate possible enhancements to the radar system in the future.  相似文献   

11.
A study of the average pattern of F-region plasma densities and velocities measured by the Chatanika incoherent scatter radar has previously suggested that the main ionospheric F-region trough is formed in the evening sector by the westward transport of plasma under the influence of convective electric fields. This paper examines the role of convective electric fields on the electron density profile and the formation of the F-region density trough for a particular night. Incoherent scatter radar data from Chatanika are presented.On 25 May 1972 an isolated substorm occurred near 0900 UT after a long period of magnetic quiet. The substorm was manifested at Chatanika, in the evening sector, by a small positive bay and a concurrent onset of westward motion of plasma associated with a rapid decrease in the F-layer electron density in the region of the moving plasma. Analysis of plasma densities and velocities during this event indicates that
  • 1.(1) temporal changes of plasma motion are associated with changes in the convective electric field pattern in response to substorm activity
  • 2.(2) the electric field pattern created a north-south gradient in the F-layer electron density which is interpreted as the formation of the ionospheric trough near its equatorward edge, and
  • 3.(3) large scale electron density fluctuations were observed in the evening sector resulting from westward travelling density variations originating in the midnight sector.
The study emphasizes the complexity, and difficulty in interpretation, of single station auroral zone measurements of the F-region ionosphere.  相似文献   

12.
Millstone Hill incoherent scatter (IS) observations of electron density (Ne, electron temperature (Te) and ion temperature (Ti) are compared with the International Reference Ionosphere (IRI-86) for both noon and midnight, for summer, equinox and winter, at both solar maximum (1979–1980) and solar minimum (1985–1986). The largest difference inNe is found in the topside, where values of Ne given by IRI-86 are generally larger than those obtained from IS measurements, by a factor which increases with increasing height, and which has a mean value near two at 600 km. Apart from the bottom of the profile, which is tied to the CIRA neutral temperature, the IRI-86 Te model has no solar cycle variation. However, the IS measurements during the summer reveal larger Te at solar maximum than at solar minimum. At other seasons higher Te at solar maximum occurs only during the daytime at the greater heights. Nighttime Te is shown by the IS radar to be generally larger in winter than in summer, an effect not included in the IRI. This is apparently due to photoelectron heating during winter from the sunlit ionosphere conjugate to Millstone Hill. The day-night difference in Ti given by IRI-86 above 600km is not as large in the IS measurements.  相似文献   

13.
A set of quiet daytime electron density profiles is established on the basis of EISCAT measurements. This set is used as a background correction in the CARD program [Brekke A., Hall C. and Hansen T.L. (1989) Ann. Geophysicae7, 269] in order to derive the energy spectra of precipitating electrons at daytime.For disturbed daytime events on 25–26 June 1985, we find that the particle precipitation typically consists of small fluxes (105 el/cm2 sster keV) of high energetic particles (20–30 keV). The Hall: Pedersen conductance ratios for such events are found to be meaningless as an indicator of the energy of the particles, in contrast to nighttime precipitation.  相似文献   

14.
An intense solar proton event causing enhanced ionization in the ionospheric D-region occurred on 12 August 1989. The event was partially observed during three successive nights by the EISCAT UHF incoherent scatter radar at Ramfjordmoen near Tromsa, Norway. Ion production rates calculated from GOES-7 satellite measurements of proton flux and a detailed ion chemistry model of the D-region are used together with the radar data to deduce electron concentration, negative ion to electron concentration ratio, mean ion mass and neutral temperature in the height region from 70 to 90 km, at selected times which correspond to the maximum and minimum solar elevations occurring during the radar observations. The quantitative interpretation of EISCAT data as physical parameters is discussed. The obtained temperature values are compared with nearly simultaneous temperature measurements at Andøya based on lidar technique.  相似文献   

15.
Until now the presence of F-region irregularities responsible for spread-F (sp-F) traces in ionograms has been considered as a purely night-time phenomenon extending sporadically to the early morning hours. We herein report that, on two occasions (26 March 1974 and 1 February 1984) similar irregularities were observed between 1400 and 1600 hours local time with the Jicamarca radar. These irregularities caused enhancements in the power of the radar echo of as much as two orders of magnitude, were found over a region of a few hundred kilometers on the topside of the F-region extending from around 600 to 1000 km altitude, and persisted for 1–2 h. The irregularities were aspect sensitive (aligned with the magnetic field) and produced echoes with a fading rate of the order of one to a few seconds. The background zonal electric field, inferred from the vertical drift velocity, was fairly constant in altitude, with values smaller than 0.1 mV m−1. During the duration of the events, zonal components of both signs occurred, with the component passing through zero several times. We have no information on the vertical component of E. These irregularities could not be observed with ground-based ionosondes, since they are on the topside of the F-region. They may be related to fossil bubbles that are responsible for HF ducting observed by satellites.  相似文献   

16.
We have detected wind oscillations with periods ranging from 1.4 to 20 days at 80–110 km altitude using Kyoto meteor radar observations made in 1983–1985. Among these oscillations, the quasi-2-day wave is repeatedly enhanced in summer and autumn. We found that the period of the quasi-2-day wave ranges from 52 to 55 h in summer, and becomes as short as 46 to 48 h in autumn in 1983 and 1984. The change in the wave period seems to coincide with a decrease in the amplitude of the zonal mean wind. A quasi-2-day wave event was simultaneously observed in January 1984 at Kyoto (35° N, 136°E) and Adelaide (35° S, 138° E), which are located at conjugate points relative to the geographic equator. Amplitudes of the meridional component at Adelaide are approximately four times larger than those observed at Kyoto. Comparison observations clearly show that the meridional component is in phase and the zonal component is out of phase, respectively, implying antisymmetry of the quasi-2-day wave between the northern and southern hemispheres. Relative phase progressions with height are similar between the Kyoto and Adelaide results for both meridional and zonal components, and indicate the presence of an upward energy propagating wave with a vertical wavelength of about 100 km.  相似文献   

17.
A high resolution wind observation of the mesosphere and lower thermosphere (73–95 km) was conducted with the aid of the high power UHF Doppler radar at Arecibo (18.4°N, 66.8°W). Zonal wind velocities were continuously observed during day-time hours on 1–15 August 1980. We discuss here the observed wind fluctuations with periods of 1–4 h in the light of internal gravity waves. The phase propagation associated with these fluctuations is, on average, shown to be downward, indicating an upward energy flux. A space-time spectral analysis shows that waves with vertical wavelengths shorter than 10 km disappear around the mesopause (about 85km), while those with longer vertical wavelengths exist throughout the observational height. This result is explained in terms of wave absorption at a critical layer where the mean zonal wind has a westerly shear with height. This feature is consistent with the behavior expected for internal gravity waves around the summer mesopause in order to explain general circulation models.  相似文献   

18.
We have carried out continuous observations of the tropopause region over Japan for three weeks during the Baiu (early summer rain “in Japan”) season in 1991, by using a VHF Doppler radar (the MU radar), radiosondes launched at the radar site and operational rawinsondes at five meteorological stations. Based on these observations, we try to examine the hypothesis that the multiple tropopauses and the dominant inertio-gravity waves are one and the same feature, and obtain some interesting results that are not inconsistent with this hypothesis. First, vertical wavenumber spectra and hodographs analyzed from the radar wind data in the tropopause region suggest that inertio-gravity waves with vertical wavelengths of ∼ 2 km are quasi-monochromatically dominant (with 2–3 day scale variabilities of 10–20%), and are in accordance with activities of the subtropical jet stream and mesoscale cyclone-front system activities observed by the operational network. Second, striking (potential) temperature fluctuations are detected simultaneously by the radiosondes and rawinsondes, which appear as multiple tropopauses in meridional cross-section analysis. Third, vertical wavenumber spectra analyzed from the radiosonde temperature data are consistent with the radar wind spectrum, if we assume that both wind and temperature fluctuations are mainly induced by the dominant inertio-gravity waves. Finally, we confirm that the dominant interio-gravity waves can be barely detected also from routine rawinsonde (1.5-km running-mean) wind data if the amplitude is larger than 1.5 m/s. However, the monochromatic wave structures are generally quite localized in space and time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号