首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
We discuss in this paper sudden sodium layers (SSLs), which we observe with a sodium lidar instrument at Andenes, Norway (69°N). We speak of a SSL if, in a narrow altitude range (typically less than 2km), the Na density increases over the normal Na density by a factor of at least 2 within 5 min. Between December 1985 and November 1987, we have observed 42 such layers in 378 h of lidar measurements. This number increases to 75 if we only require an increase of a factor of 1.5 within 8 min. At our observation site, SSLs have the following properties: (a) they develop between 90 and 110 km altitude, (b) they develop between 20 and 02 LT, (c) their appearance shows a strong, positive correlation with that of ƒ-type Es layers, and (d) their appearance does not show a strong correlation with either riometer absorption or meteor showers. We discuss a number of potential processes for SSL formation. SSLs above 100km can be formed in ƒ-type Es layers by the conversion of Na+ ions into neutral Na. The development of SSLs below 95 km requires the presence of an additional reservoir of Na, such as Na-bearing molecules, ions, and/or ‘smoke’ particles. We also evaluate the proposal that SSLs are the outcome of single meteoroids entering the upper atmosphere, a proposition for which we find little observational support.  相似文献   

2.
The Arecibo 430 MHz incoherent scatter radar was used to observe the diurnal variation of electron concentration in the 6–100 km altitude region on 14 August 1977. This report is an evaluation of the technique and includes a fairly complete discussion of errors involved. Although interference remains a serious problem, the results are useful down to about 60 km altitude and a minimum density of about 50 electrons cm−3. Characteristic statistical plus systematic errors indicate that an observed 100 electrons cm−3 value actually lies between 50 and 180 electrons cm−3 assuming no interference. Observed variations of electron concentration include not only those due to basic solar control but also at least one wavelike feature characterized by phase shift with altitude. These results should prove particularly useful as constraints to time dependent models of the D-region chemistry.  相似文献   

3.
As part of the MAP/WINE campaign (winter 1983–1984) and the MAC/SINE campaign (summer 1987) high resolution wind profiles were obtained in the upper mesosphere using the foil cloud technique. Vertical winds were derived from the fall rate of the foil clouds and are used for estimating the momentum fluxes associated with vertical wavelengths shorter than about 10 km. From the ensemble average of 15 observations over an altitude range of 74–89 km we calculate a zonal net momentum flux of +12.6 ± 4.5 m2s−2 in summer. The average of 14 measurements in winter between 73 and 85 km indicates a zonal net momentum flux of −3.7 ± 2.4 m22 s−2.  相似文献   

4.
Electron density profiles in the night-time auroral ionosphere were obtained with the incoherent-scatter radar at Chatanika, Alaska, during short duration precipitation events characterized by riometer data as spike events. The measurements show exceptionally large electron densities in the D-region during spike events, the electron density typically exceeding 106 cm3 at 90 km altitude for a short time. The existence of a steep horizontal gradient, particularly on the poleward edge of the event, is inferred. The altitude and thickness of the absorbing layer are deduced. It is shown that 20–40 keV electrons make the greatest contribution to an absorption spike and that the spectrum of electrons producing such an event is probably softer than that producing a more slowly varying absorption peak. These absorption layers are too high for their altitudes to be measured by the technique of multi-frequency riometry.  相似文献   

5.
Mean winds at 82–106 km altitude have been almost continuously monitored by the Kyoto meteor radar over the period from May 1983 to December 1985. The mean zonal wind becomes eastward with amplitudes as large as 30 m s−1 in the summer months (May–August), maximizing early in July at 95 km altitude, while it is less than 10 m s−1 at all the observed altitudes during the equinoxes. It is normally eastward in winter at low altitudes, although it sometimes becomes westward during sudden stratospheric warmings. The mean meridional wind is usually equatorward and is weaker than the zonal component. A southward wind exceeding 10 m s−1 is detected in July and August. The observed mean winds are compared with the CIRA 1972 model and coincidences with sudden warmings of changes in zonal wind direction are pointed out.  相似文献   

6.
Night-time mesospheric temperatures were simultaneously determined from the Doppler broadening of the D2 resonance line of atmospheric sodium excited by a laser and from the rotational distribution of the P1(1), P1(3) and P1(4) lines of the OH(3,1) band by an i.r. spectrometer. Both instruments were located at the Andøya Rocket Range (69°N, 16°E). The mesospheric temperature gradient permits determination of the altitude of the OH1 emitting layer from a comparison of the equivalent layer temperatures calculated from the height-resolved Na Doppler temperatures with the observed OH1 rotational temperatures. The altitude of the OH1 layer maximum is determined with an accuracy of ±4 km. For 3 nights in January 1986 the OH1 emission layer is found near an altitude of 86 km.  相似文献   

7.
Accurate measurement of the electron density profile and its variations is crucial to further progress in understanding the physics of the disturbed equatorial ionosphere. To accomplish this, a plasma frequency probe was included in the payload complement of two rockets flown during the CONDOR rocket campaign conducted from Peru in March 1983. In this paper we present density profiles of the disturbed equatorial ionosphere from a night-time flight in which spread-F conditions were present and from a day-time flight during strong electrojet conditions. Results from both flights are in excellent agreement with simultaneous radar data in that the regions of highly disturbed plasma coincide with the radar signatures. The spread-F rocket penetrated a topside depletion during both the upleg and downleg. The electrojet measurements showed a profile peaking at 1.3 × 105cm−3 at 106 km, with large scale fluctuations having amplitudes of roughly 10 % seen only on the upward gradient in electron density. This is in agreement with plasma instability theory. We further show that simultaneous measurements by fixed-bias Langmuir probes, when normalized at a single point to the altitude profile of electron density, are inadequate to correctly parameterize the observed enhancements and depletions.  相似文献   

8.
The altitude distribution of the oxygen infrared atmospheric bands at 1.27 μm was measured during the total solar eclipse of 26 February 1979. The ozone concentration profile has been derived from these airglow measurements and indicates that at 85 km the concentration at totality was 7 × 1.7 cm−3, with no well defined upper layer. This reduced concentration, which is typical of summertime conditions, was probably due to perturbations in the mesospheric chemistry and transport induced by a winter warming event that was in progress at the time of the eclipse. At 60 km the ozone concentration, 2.7 × 1010 cm−3, was enhanced above that normally measured. This increase may also have been caused by the stratospheric warming event but the effects of a particle precipitation event, which was also in progress during the eclipse, may be important.  相似文献   

9.
A realistic model for the temperature variation along geomagnetic field lines is described. For high altitudes (>1500 km) the temperature is taken to increase as the nth power of radial distance (n−2), giving temperatures consistent with those measured in situ by high altitude satellites. For realistic temperatures at low altitude an extra term is included. The temperature gradient along the field line is then 0.9–1.6° km−1 during the day and 0.5–0.7° km−1 during the night at 1000 km, reducing to about half these values at 2000 km, for the latitude range 35–50°. This is consistent with calculations made from nearly simultaneous satellite measurements at 1000 and 2500 km. It is shown that assuming diffusive equilibrium, including the new temperature model, more realistic equatorial electron density profiles result than for isothermal field lines.The temperature gradient model is also purposely formulated to be of a form that enables the temperature modified geopotential height to be obtained without numerical integration. This renders the model particularly suitable for ray-tracing calculations. A ray-tracing model is developed and it is shown that unducted ray paths are significantly altered from the corresponding paths in an equivalent isothermal model; there is greater refraction and magnetospheric reflection takes place at lower altitudes. For summer day conditions, an inter-hemispheric unducted ray path becomes possible from 26° latitude that can reach the ground at the conjugate.  相似文献   

10.
Observations of the mean wind flow and wave motions in the stratosphere at the South Pole are presented. The atmospheric motions are determined from the tracking of a high altitude, zero-pressure balloon launched from Amundsen-Scott Station during the austral summer of 1985–1986. The balloon position was precisely monitored by an optical theodolite for a large portion of the flight so that small scale motions could be resolved. The mean flow above the pole was approximately 3ms−1. Atmospheric motions characteristic of internal gravity waves were observed with an intrinsic period of approximately 4.5 h and vertical and horizontal wavelengths of approximately 2.5km and 125km, respectively. The horizontal perturbation velocity of the observed waves was large compared to the mean horizontal flow velocity. The implication is that wave motions play a dominant role in the transport of stratospheric constituents in regions where the mean winds are light, such as over the South Pole during austral summer.  相似文献   

11.
As part of the MAC/EPSILON campaign in northern Norway during October and November 1987, five rocket-borne payloads made three-axis electric field measurements of the middle atmosphere. Flights 31.066 and 31.067 consisted of large multi-experiment packages, while the other three flights (30.036, 30.037 and 30.038) were devoted primarily to electrical measurements. Simultaneous measurements of the horizontal electric field made by flights 31.066 and 30.036 were in general agreement in their limited altitude region of overlap. A simultaneous small temporal feature was observed in both datasets. The relatively more extensive horizontal E-field datasets from 31.066 and 31.067 both exhibited a decreasing mapping function with decreasing altitude, which is an indication of the observation of fields from a local auroral patch. Small-scale variations in the horizontal fields of the flights were similar to observed wave-like variations in the neutral wind field. No unusual features were observed at high altitudes in the measured E1 field. Two of the payloads observed small vertical layer structures between 40 and 50 km. No electric field structure was observed in association with the presence of a sudden sodium layer.  相似文献   

12.
In the altitude range 70–100 km, high-resolution wind profiles have been measured during the summers of 1987 and 1988 at Andenes (69°N). We report on the wind corners observed in these profiles and compare their properties with those of wind corners seen in the winter of 1983–1984 and autumn 1987. Five of the main results are as follows. (1) The occurrence rates for wind corners in general are similar in summer and in winter. The database for autumn (only 7 flights) was too small to draw any firm conclusions. A strong wind corner was seen, roughly, on every third experiment, both in summer and in winter. (2) The results obtained on the temporal occurrence of wind corners suggest that wind corners seem to have no preference to appear at certain hours of the day. (3) Wind corners tend to appear at preferred heights which are higher in summer than in winter. The spacing between these preferred heights is about 5 km in summer and about 3-3.5 km in winter. (4) In strong wind corners the sense of rotation of the wind direction is positive in summer and negative in winter (with positive being defined as a rotation of the wind direction from northward towards eastward with increasing altitude). (5) At altitudes below 90km wind corners tend to occur at or close to atmospheric layers having Ri ≈ 0.25.  相似文献   

13.
Mean winds at 60–90 km altitudes observed with the MU radar (35°N, 136°E) in 1985–1989 are presented in this paper. The zonal wind at 70 km became westward and eastward in summer and winter, respectively, with a maximum amplitude of 45 m s−1 westward in early July and 80 m s−1 eastward at the end of November. The meridional wind below 85 km was generally northward with the amplitudes less than 10 m s−1. In September to November, the meridional wind at 75–80 km becomes as large as 20–30 m s−1. Those zonal wind profiles below 90 km show good coincidence with the CIRA 1986 model, except for the latter half of winter, from January to March, when the observational result showed a much weaker eastward wind than the CIRA model. The height of the reversal of the summer wind from westward to eastward was determined as being 83–84 km, which is close to the CIRA 1986 model of 85 km. The difference between the previous meteor radar results at 35–40°N, which showed the reversal height below 80 km, could be due to interannual variations or the difference in wind measurement technique. In order to clarify that point, careful comparative observations would be necessary. These mean winds were compared with Adelaide MF radar observations, and showed good symmetry between the hemispheres, including the summer reversal height, except for the short period of eastward winds above Kyoto and the long period over Adelaide.  相似文献   

14.
Some results from 54 nights of simultaneous measurements, performed between 1984 and 1987, of rotational temperatures for the OH(6−2) and O2(1∑)(0–l) bands are presented. A summer enhancement by 15 K in O2 temperature has been found that has not formerly been observed in airglow measurements. At least five nights show prominent tide-like temperature oscillations with a phase shift between layers typical of upward wave propagation at about 10 km h−1, with up to 55 K variation. During other nights, similar oscillations are limited to the O2 layer. Data for different seasons seem to be characterized by different levels of variability. During the one equinox campaign, nocturnal temperature variations show an exceptionally stable pattern of tide-like oscillations.  相似文献   

15.
The daily variations of the meridional wind at ±18° latitude have been obtained for summer and winter between 1977 and 1979 using the in situ measurements from the Atmosphere Explorer-E (AE-E) satellite. The AE-E altitude increased from about 250 to about 450 km during this period, with solar activity increasing simultaneously. Data are presented at three altitudes, around 270, 350 and 440 km. It was possible to average the data to obtain the 24 h variations of the meridional wind simultaneously at northern and southern latitudes and thereby study the seasonal variation of the meridional wind in the altitude range covered. Two features are found showing significant seasonal variation: (a) a late afternoon maximum of the poleward wind occurring only in winter at 1800 LT at all three altitudes; (b) a night-time maximum in the equatorward wind—the summer equatorward wind abating earlier (near 2130 LT) and more rapidly than the winter wind (after 2300 LT). Furthermore, in summer the night-time wind reaches higher amplitudes than in winter. The night-time feature is consistent with the observed seasonal variation of the equatorial midnight temperature maximum, which occurs at or before midnight in summer and after midnight in winter, showing a stronger maximum in summer. The observed night-time abatement and seasonal variations in the night-time winds are in harmony with ground based observations at 18° latitude (Arecibo). The time difference found between summer and winter abatements of the night-time equatorward wind are in large part due to a difference between the phases of the summer and winter diurnal (fundamental) components, and diurnal amplitudes are larger in summer than in winter at all threee altitudes. However, the higher harmonics play an important role, their amplitudes being roughly 50% of the diurnal and in some instances larger. The 24 h variation is mainly diurnal at all altitudes in both summer and winter, except in winter around 2700 km altitude where the semi- and ter-diurnal components are approximately equal to or larger than the diurnal.  相似文献   

16.
A quasi 2-day oscillation in the meridional winds near 90 km altitude has been observed at Adelaide (35°S) during late summer of the years 1966–1975. The mean amplitude in mid-January is 48 m s−1, and the phase variation with height is indicative of a wave with downward phase propagation and a vertical wavelength greater than 100 km.  相似文献   

17.
Millstone Hill incoherent scatter (IS) observations of electron density (Ne, electron temperature (Te) and ion temperature (Ti) are compared with the International Reference Ionosphere (IRI-86) for both noon and midnight, for summer, equinox and winter, at both solar maximum (1979–1980) and solar minimum (1985–1986). The largest difference inNe is found in the topside, where values of Ne given by IRI-86 are generally larger than those obtained from IS measurements, by a factor which increases with increasing height, and which has a mean value near two at 600 km. Apart from the bottom of the profile, which is tied to the CIRA neutral temperature, the IRI-86 Te model has no solar cycle variation. However, the IS measurements during the summer reveal larger Te at solar maximum than at solar minimum. At other seasons higher Te at solar maximum occurs only during the daytime at the greater heights. Nighttime Te is shown by the IS radar to be generally larger in winter than in summer, an effect not included in the IRI. This is apparently due to photoelectron heating during winter from the sunlit ionosphere conjugate to Millstone Hill. The day-night difference in Ti given by IRI-86 above 600km is not as large in the IS measurements.  相似文献   

18.
In the 80–100 km altitude region free sodium atoms are abundant enough to allow the probing of the Doppler widened hyperfine structure (hfs) of the D2 resonance transition by ground-based lidar and hence to deduce atmospheric temperatures. We discuss the dependence of the observed shape of the hfs on the temperature, on geographic location and on polarization of the lidar, on differential extinction, and on the bandwidth of the lidar transmitter. The results are applied to new measurements of the mesopause sodium hfs structure obtained by the University of Bonn lidar.  相似文献   

19.
High latitude quiet summer ion composition values in the altitude range from 200 to 245 km have been derived from a combined ion line/plasma line experiment in a full five-parameter fit. The EISCAT UHF radar was used with a 5 × 14 μs multipulse scheme for the ion line measurements, giving a range resolution of 3 km. Plasma line signals from the same altitudes were measured with a 70 μs pulse using a spectrum analyzer. Significant deviations from the standard EISCAT composition model were found, mainly at the upper altitudes. The O+ content was generally lower than predicted by the model. For the largest composition deviations, significant effects were seen in the temperatures, particularly in the electron temperature. The electron temperatures derived by a standard ion line fit applying the model were underestimated by up to 15%.  相似文献   

20.
The stratospheric volcanic cloud from the eruption.of El Chichon, Mexico, on 4 April 1982 was observed routinely by a Nd: YAG lidar system from 18 April 1982 at Kyushu University, Fukuoka, Japan. The observed layers of the cloud above 20 km were in the easterly wind region and those below 20 km were in the westerly region. The main part of the cloud mass was in the upper layer. This upper layer broadened slowly until September 1982, then broadened rapidly and merged with the lower layer as the easterly wind changed to the westerly wind. The vertical eddy diffusion coefficient estimated from the broadening of the upper layer was much smaller than the value usually used in the one-dimensional model calculation of chemical components until September and subsequently remained at about the same value. The increase of the integrated backscattering coefficient (IBC) was about two orders of magnitude larger than the largest increase after volcanic injections for the last 10 years. The IBC reached a maximum value on 3 May and gradually decreased until August 1982, then re-increased until December 1982. The IBC between December 1982 and February 1983 was about the same value as in May 1982. Using the one-dimensional stratospheric sulfate aerosol model simulations it was concluded that to explain the broadening of the upper layer an eddy diffusion coefficient of about 102cm2s-1 would be needed in the easterly wind region in summer. It was also concluded that the IBC re-increase was caused after advective horizontal transport from lower to higher latitudes by chemical reactions within the upper layer without meridional diffusion during summer and that the transport was controlled by nucleation, which gives rise to small particles, a decreasing settling velocity of the volcanic cloud and then the cloud being less affected by horizontal transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号