首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
On the nights of 21 and 28 October 1987, two Nike Orion payloads (NASA 31.066 and 31.067) were launched from Andøya, Norway, as part of the MAC/EPSILON campaign, to study the effect of auroral energetics on the middle atmosphere. Each payload carried detectors to measure relativistic electrons from 0.1 to 1.0MeV in 12 differential energy channels, and bremsstrahlung X-rays from >5 to >80keV in 5 integral channels. In addition, instrumentation to measure bulk ion properties and electric fields was also carried by these and/or near simultaneous flights. Flight 31.066 was launched during the recovery phase of a moderate magnetic substorm, during relatively stable auroral conditions. Flight 31.067 was launched during highly active post-break-up conditions during which Pc 5 pulsations (> 150s period) were in progress. The energetic radiation of the first event was composed almost entirely of relativistic electrons below 200 keV with negligible contributions from bremsstrahlung X-rays, while the radiation of the second event was dominated by much softer electrons ( < 100 kcV), which produced high X-ray fluxes that exceeded the cosmic ray background as an ionizing source down to altitudes below 30 km. Simultaneous conductivity measurements during both events show consistency with the ionizing radiations, with the pulsation event producing free electrons down to 55 km. far below their expected altitude range during night-time. These comparisons are discussed to evaluate the impact of such events on the middle atmosphere.  相似文献   

2.
High resolution incoherent-scatter observations of E-region thin (1–3 km) metallic ion layers are presented. Data were collected during three different periods from August 1990 to August 1991, in three different experimental modes. First, the antenna was directed vertically and the entire duty cycle was devoted to Barker coded multi-pulse [Zamlutti (1980) J. atmos. terr. Phys.42, 975–982] measurements to determine the densities and temperatures in the E-region with 300 m resolution. The second experiment measured the F-region electric field as well as the high resolution E-region densities. For the third experiment the antenna was scanned magnetic north-south while only the E-region densities were measured. The experiments were carried out on 16 different nights for a period of 4 h each night at a time near magnetic midnight. Thin ionization layers were observed on 12 of the 16 nights. The first experiment demonstrated that the thin layers are composed of a significant fraction of heavy metallic ions; assuming the layers are composed of a mixture of Fe+ and Mg+ a composition estimate of 63% Fe+ was obtained in one example. The second experiment investigated the relationship between the direction of the electric field and the presence of the thin layers. In these observations thin layers were only present when the electric field was pointed in the magnetic north-west or south-west quadrants, most frequently when the field was near magnetic west. Correlation between layer altitude and field direction was also observed, layers occurring at higher altitudes for fields directed in the north-west, and lower altitudes for fields directed to the south-west. The observations are compatible with the electric field mechanism for thin ionization layer formation. The scanning experiment showed that the layers were of a limited latitudinal extent, typically about 100 km up to a maximum of about 200 km.  相似文献   

3.
Simultaneous daytime observations of E region horizontal irregularity drift velocities in the equatorial electrojet and F region vertical plasma drifts were made on a few magnetically quiet days at the magnetic equatorial station of Trivandrum (dip 0.5°N). Measurements of the electrojet irregularity velocities by VHF backscatter radar and the F region vertical plasma drifts by HF Doppier radar are used to deduce the daytime East-West electric fields in the E and F regions, respectively. The fluctuating components of the electric fields are separated and subjected to power spectral analysis. The E and F region electric field fluctuations are found to be well correlated; the estimated correlation coefficient is in the range of 0.52–0.8. The fluctuation amplitudes are of the order of 15% over the background for the E region and 25% for the F region. The spectral analysis reveals dominant components in the range of 30–90 min with F region components stronger than those of the E region by a factor of about 1.5 on the average. The F region electric fields during daytime being coupled from the low latitude E region, the good correlation observed between the E and F region perturbations suggests that the electric fields in the E region at low and equatorial latitudes are coherent for the temporal scales of the order of few tens of minutes. The spectral characteristics are such that the commonly occurring medium scale gravity waves could possibly be the source for the observed fluctuations in the E and F region electric fields.  相似文献   

4.
It is shown that the generation of the equatorial spread F irregularity in the post-sunset period need not he always at the base of the F region. The irregularities are generated at the E region, provided there existed a retardation type E2 layer or a uniform blanketing sporadic E layer before the sunset. The irregularities are generated even at the region close to the altitude of peak ionization density, provided there is a discontinuity in the plasma density variation with height (a kink or a G layer). It is suggested that if proper electric fields are present at the sunset period, then the spread F irregularities are generated at any altitude having plasma density discontinuity.  相似文献   

5.
The effects of day-to-day or seasonal variation of altitude and latitude profiles of the Elayer plasma density in the equatorial ionosphere on equatorial electrojet (EEJ) structure are examined numerically using a self-consistent and high resolution dynamo model. It is found that variations in the E-layer peak altitude and amplitude and its gradient below significantly affect EEJ structure. For any realistic shape, the EEJ peak appears at or below the E-layer peak altitude. Distinct double peaks appear in the EEJ structure, such as revealed by rocket measurements, if the E-layer peak is above 105 km or the gradient is large, as when sporadic-E is present. The influence of the latitudinal variation of ionospheric field line integrated conductivities upon the amplitude and altitude of the EEJ peak is demonstrated.  相似文献   

6.
The solar cycle, seasonal and daily variations of the geomagnetic H field at an equatorial station, Kodaikanal, and at a tropical latitude station, Alibag, are compared with corresponding variations of the E-region ionization densities. The solar cycle variation of the daily range of H at either of the stations is shown to be primarily contributed to by the corresponding variation of the electron density in the E-region of the ionosphere. The seasonal variation of the ΔH at equatorial stations, with maxima during equinoxes, is attributed primarily to the corresponding variation of the index of horizontal electric field in the E-region. The solar daily variation of ΔH at the equatorial station is attributed to the combined effects of the electron density with the maximum very close to noon and the index of electric field with the maximum around 1030 LT, the resulting current being maximum at about 1110 LT. These results are consistent with the ionosphere E-region electron horizontal velocity measurements at the equatorial electrojet station, Thumba in India.  相似文献   

7.
A model using photochemistry and transport due to electric fields and gravity wave winds has been used to explain the formation of ionisation layers observed over an equatorial station Thumba (dip 0°47′S) with rocket-borne Langmuir probes during two daytime counter-electrojet periods. These layers were seen as blanketing Es-layers with an ionosonde at Thumba. Convergence of the metallic ions due to three-dimensional gravity wave winds and a westward electric field appears to be mainly responsible for the observed ionisation layer over the equator.  相似文献   

8.
In a previous paper, we considered the penetration of DC thundercloud electric fields E into the ionosphere and also into the region between the ionosphere and the ground (Velinov and Tonev, 1994). In the present paper, we extend the analysis by making a more precise approximation of the electric conductivity profiles by 5–10 piecewise exponential functions of altitude instead of the two functions used up to now. This allows a much more realistic representation of the atmospheric conductivity profile. Besides, Maxwell's equations are solved for more general boundary conditions, taking into account that the electrosphere is not a perfect conductor. This leads to the appearance not only of the transverse Er (as had been assumed until now), but also of the geomagnetic field-aligned Ez component of the penetrating thundercloud electric fields. The computations show that both Er and Ez cause significant variations of the electron density profiles N(z) in the ionosphere.  相似文献   

9.
We have found electron temperature enhancements up to 1000K at 110 km altitude using the EISCAT multipulse method which allows high spatial resolution measurements within E-region. This electron temperature enhancement which is closely related to the d.c. electric field strength, is in good agreement with theoretical estimates based on wave heating. The results of the measurements are presented together with a discussion of the electron gas heating, its height variations and its difference in the eastward and westward electrojet.  相似文献   

10.
The E-region Rocket/Radar Instability Study (Project ERRRIS) investigated in detail the plasma instabilities in the low altitude (E-region) auroral ionosphere and the sources of free energy that drive these waves. Three independent sets of experiments were launched on NASA sounding rockets from Esrange, Sweden, in 1988 and 1989, attaining apogees of 124, 129 and 176km. The lower apogee rockets were flown into the unstable auroral electrojet and encountered intense two-stream waves driven by d.c. electric fields that ranged from 35 to 115 mV/m. The higher apogee rocket returned fields and particle data from an active auroral arc, yet observed a remarkably quiescent electrojet region as the weak d.c. electric fields (~ 10–15 mV/m) there were below the threshold required to excite two-stream waves. The rocket instrumentation included electric field instruments (d.c. and wave), plasma density fluctuation (δn/n) receivers, d.c. fluxgate magnetometers, energetic particle detectors (ions and electrons), ion drift meters, and swept Langmuir probes to determine absolute plasma density and temperature. The wave experiments included spatially separated sensors to provide wave vector and phase velocity information. All three rockets were flown in conjunction with radar backscatter measurements taken by the 50MHz CUPRI system, which was the primary tool used to determine the launch conditions. Two of the rockets were flown in conjunction with plasma drift, density, and temperature measurements taken by the EISCAT incoherent scattar radar. The STARE radar also made measurements during this campaign. This paper describes the scientific objectives of these rocket/radar experiments, provides a summary of the geophysical conditions during each launch, and gives an overview of the principal rocket and radar observations.  相似文献   

11.
From VHF backscatter radar measurements at Thumba (dip: 56′S) of the phase velocities of type II irregularities in the equatorial electrojet (EEJ), electric field (Ey) values are estimated for different times of the day. Using the electric field values thus deduced and the Pedersen and Hall conductivities calculated using model values of electron densities and the collision frequencies of ions and electrons, the height integrated current intensity in the EEJ is estimated. The surface level geomagnetic field perturbation ΔH produced by this ionospheric current is then calculated. The calculated values of ΔH are compared with observed values of ΔH (after subtracting the magnetospheric contribution of Dst) for a number of days. The comparisons show good agreement between observed ΔH values and those calculated from measured electric fields. The agreement is found to be good even when type I irregularities are present at higher altitudes in the EEJ. This comparative study demonstrates the validity of estimating electric field values from VHF radar measurements and it indicates the possibility of deducing electric field values from ground level ΔH values, at least for statistical studies.  相似文献   

12.
The characteristics of metallic and molecular ion sporadic-E (Es) layers, formed by the action of strong electric fields at auroral latitudes, are examined using computer simulations. It is found that, for electric fields directed between northward and westward (northern hemisphere), thin metallic ion layers (<2 km thick) can be formed above about 105 km altitude. For electric fields directed from westward, through southward, to south-eastward, slightly thicker (4–6 km thick) metallic ion layers can form between 90 and 105 km altitudes. Thin layers of molecular ions can be formed by electric fields directed between north and west if the ion density is low. Examples of Es layers observed by the EISCAT radar, together with simultaneous observations of electric fields and ion drifts are presented which show good agreement with the simulations. The relationship between the lower-altitude Es layers and sudden sodium layers (SSLs) is discussed leading to an explanation of some of the characteristics of SSLs at high latitude. A possible involvement of smoke particles in the formation of both Es layers and SSLs is proposed.  相似文献   

13.
This paper summarizes the results of measurements of the electrical conductivity σ and vertical component of the vector electric field Ez acquired from eight stratospheric balloon flights launched from Amundsen-Scott Station, South Pole, in the austral summer of 1985–1986. The major findings of this research are as follows
  • 1.(1) The data contribute to the set of global atmospheric electricity measurements and extend the work of COBB [(1977), Atmospheric electric measurements at the South Pole. In Electrical Processes in Atmospheres, Dolezalek H. and Reiter R. (eds), pp. 161–167. Steinkopf, Darmstadt, F.R.G.] to determine the electrical environment of the south polar region
  • 2.(2) The average vertical profile of the conductivity at the South Pole, when compared with profiles obtained at other Antarctic locations, suggests that the conductivity scale height may increase with increasing geomagnetic latitude across the polar cap.
  • 3.(3) The conductivity profiles measured at the South Pole and other Antarctic locations differ significantly from polar cap model profiles. On the basis of these measurements, the model profiles appear to require modification
  • 4.(4) The magnitudes of the Ez profiles were observed to vary from day-to-day by a factor of > 2
  • 5.(5) In all of the flights the air-Earth conduction current Jz, calculated as the product of Ez and σ, decreased with altitude in agreement with previous direct measurements of the air-Earth current by Cobb [( 1977), Atmospheric electric measurements at the South Pole. In Electrical Processes in Atmospheres, Dolezalek H. and Reiter R. (eds), pp. 161–167. Steinkopf, Darmstadt, F.R.G.]
  • 6.(6) The magnitude of Jz was 2–3 times larger than the global average, which can be attributed to the lower columnar resistance of the atmosphere above the high-elevation Antarctic plateau. The magnitude of Jz agrees with that observed by Cobb, if the Cobb measurements are multiplied by the Few and Weinheimer [(1986), Factor of 2 error in balloon-borne atmospheric conduction current measurements. J. geophys. Res.91, 10937] correction factor of 2
  • 7.(7) Ez from all of the flights during times of balloon float demonstrates characteristics of the classical ‘Carnegie’ diurnal variation, which is indicative of global influences on the ionospheric potential
  • 8.(8) The influence of geomagnetic activity was observed as a decrease in the amplitude of the diurnal variation of Ez with increasing geomagnetic activity index Kp, which is the predicted effect at the South Pole of the magnetospheric polar-cap potential superimposed on the ‘Carnegie’ potential variation.
  相似文献   

14.
Middle atmosphere electrodynamics at high latitudes differs significantly from the normally assumed picture of a passive region through which electric fields of external origin couple. Large Vm −1 electric fields, both horizontal and vertical, have been observed within bounded regions of the upper stratosphere and lower mesosphere. They seem to occur only in regions where the electrical conductivity is a few times 10−10 S m−1 or less and appear to be current limned. While low conductivity is necessary, it is not a sufficient condition for occurrence. The observed large horizontal electric fields were found to be anticorrelated with the local neutral wind. However, a generation mechanism of these electric fields is as yet unknown but must involve space charge separation rather than dynamo effects. Large variations in the conductivity were also observed to occur with fluctuations in magnetic activity, and these were found to be consistent with measured variations in energy deposition during auroral phenomena. Theoretical concepts of mapping of electric fields downward from the thermosphere along equipotential magnetic field lines were shown to hold qualitatively in the D-region at the mV m−1 level. Perturbations affecting such models were determined to be small.  相似文献   

15.
Measurements with a 25 MHz radar over Iioka, Japan show that field-aligned E-region irregularities occur mainly at night in association with Es-layers at an altitude range of about 100–110 km and drift predominantly westward with speeds of the order of 60 m s−1. These observed characteristics of the irregularities are shown to be in reasonable agreement with quantitative predictions of the gradient drift instability theory. The predictions are based on appropriate models for neutral air densities and temperatures, ionic composition and ionospheric electric fields and on available observations of electron density profiles of E- and sEs-layers.  相似文献   

16.
Substantial increases of the ion temperature can be observed at high latitudes as a consequence of strong convection electric fields. We have measured, with EISCAT, three independent components of the ion velocity vector and temperature in the same scattering volume, at about 300 km. During periods of strong variations in ion velocity (consequently of the E-field), the ion temperatures derived at the 3 sites are different. This difference, which appears to be systematic for the two experiments studied, can be interpreted in terms of different ion temperature perpendicular and parallel to the magnetic field, i.e. Ti greater than Ti. Assuming that a bi-Maxwellian distribution is present for convection electric field strengths as large as 50 mV m−1, one obtains an anisotropy factor of approximately 1.5. It also appears that resonant charge exchange is the dominant collision process. During the evening sector events studied, the electron density was decreasing, whereas the electron temperature was generally increasing. Such events are strongly related to variations in the magnetic H component detected on the ground.  相似文献   

17.
Three measurements of ionospheric electric field were made during the 24 h ALADDIN rocket programme at Wallops Island (37°50′N, 75°29′W) on June 29–30, 1974. The first of these used a double probe instrument, flown at 1500 Local Solar Time, and the second and third measurements were made by barium cloud releases at evening and morning twilight. These three electric field vectors have been compared with the predictions of a number of models of electric field due to the dynamo effects of various atmospheric tides, and also of a possible magnetospheric origin. On the assumption that the measurements were made at a location equatorward of the afternoon convergence and poleward of the morning divergence in the electric field patterns related to the Sq current cystem, Stening's model of the diurnal variation of the electric field induced by the (1, −2) tidal model at the time of the Summer solstice correctly predicts the directions of the observed electric field. Forbes and Lindzen's model, incorporating the three major propagating tidal modes as well as the evanescent (1, −2) mode, also bears an acceptable relationship to the ALADDIN electric field directions. The ALADDIN E-field magnitudes are comparable with those obtained by ground-based observations (incoherent scatter) from Millstone Hill and from Saint Santin but are about half of Stening's model values, and three times those of Forbes and Lindzen.While the Millstone Hill E-field directions are compatible with the ALADDIN observations, Saint Santin E-field directions, at the same latitude but 75° difference in longitude, are distinctly different from ALADDIN, implying that longitudinal differences are significant.  相似文献   

18.
Radar and radio measurements have provided detailed information on the dependence of F-region electrodynamic drifts on height, season, solar cycle and magnetic activity. Recently, satellite ion drift and electric field probes have determined the variation of low latitude ionospheric drifts over a large range of altitudes and latitudes. The general characteristics of the quiet time plasma can be explained as resulting from E- and F-region dynamo and interhemispheric coupling processes. The low latitude and equatorial zonal and upward/poleward components of the plasma drift respond differently to geomagnetic activity. Disturbance dynamo effects are responsible for the drift perturbations following periods of enhanced magnetic activity. The prompt penetration of high latitude electric fields to lower latitudes produces large perturbations on the upward/poleward drifts, but has no significant effect on the low latitude and equatorial zonal drifts. A number of processes such as ‘overshielding’, ‘fossil wind’ and magnetic reconfiguration were suggested as being responsible for the direct penetration of high latitude electric fields to lower latitudes. Detailed low latitude and global numerical models were used to study the characteristics of low latitude and equatorial plasma drifts and their response to changes in the polar cap potential drop or in the high latitude field-aligned currents. These models can reproduce the latitudinal variation of the perturbation electric fields and their diurnal variations, but are still unable to account for several aspects of the experimental data as a result of the complexity of the high latitude and magnetospheric processes involved.  相似文献   

19.
In a joint campaign involving EISCAT, the Cornell University Portable Radar Interferometer (CUPRI), and sounding rockets, we have observed short-lived elevations of E-region electron temperatures, indicating the presence of strong electric fields. The use of a new pulse-code technique has considerably improved our EISCAT data in regions of low ionospheric electron densities. It has been found that strong and apparently short-lived enhancements of electric fields and associated E-region electron temperatures occur more commonly than long-lived ones. However, earlier EISCAT data with simultaneous optical recordings (and also some CUPRI radar data from the ERRRIS campaign) indicate that many of these events are, in fact, not short-lived, but occur in localized regions and are associated with drifting auroral forms. We show that the observed elevations of electron temperatures are created by very intense electric fields which can be found within narrow regions adjacent to auroral arcs. We discuss our observations against the background of models for electric field suppression or enhancement in the vicinity of auroral precipitation.  相似文献   

20.
Magsat data are re-examined with regard to the presence and character of fields due to the equatorial electrojet and meridional currents at dawn and dusk local times. Dip-latitude organized field variations at dawn are:
  • 1.(1) extremely weak,
  • 2.(2) extremely variable with longitude,
  • 3.(3) inconsistent with the pattern expected from a line or narrow sheet current.
It is shown that the use of Magsat dusk data can ‘contaminate’ a main field model, introducing apparent equatorial electrojet effects into the dawn data.Fields due to the equatorial electrojet and (presumably) associated meridional currents are clearly present in the dusk data. They show a variation with longitude which is apparently associated with the longitudinal variation of the strength, or square of the strength, of the main field in the E-region. Also evident is a variation with time of the year, although data are available for only a six month period. The meridional currents are generally minimum during January and February and maximum either during November and December or March and April, depending upon longitude. The E-region horizontal currents are minimum in November and December and maximum in March and April, except for − 30° to −90° longitude when the maximum occurs in January and February.Assuming that field gradients in local time are considerably smaller than field gradients in dip-latitude, current densities are estimated to be 1–3.6μA/m2 for the horizontal current at 110km and about 10–20 × 10−9 A/m2 for the vertical currents at 400km altitude. These results confirm and extend earlier results of Takeda and Maeda.Most models of the electrojet system in the literature disagree severely with these measurements either because their scope is inadequate or because of the wind system they assume. Those models which best describe the data invoke an eastward wind and/or an eastward electric field at dusk local time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号