首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous observations of polar mesospheric summer echoes (PMSE) have been made with two different frequency radars during the launch of a sounding rocket designed to measure the fluctuations in the electron density in the same height range. The cross-section for radar backscatter deduced from the rocket probe data under the assumption of isotropic turbulence is in reasonable agreement with the measured signals at both 53.5 MHz with the mobile SOUSY radar and 224 MHz with the EISCAT VHF radar, which correspond to backscatter wavelengths of about 3 and 0.75 m, respectively. Some controversy exists over the relative roles of turbulent scatter vs specular reflections in PMSE. A number of characteristics of the data obtained in this experiment are consistent with nearly isotropic, intense meter-scale turbulence on this particular day. Since equally compelling arguments for the importance of an anisotropic-type mechanism have been presented by other experimenters studying PMSE, we conclude that both isotropic and anisotropic mechanisms must operate. We have found the inner scale for the electron fluctuation spectrum, which corresponds to the diffusive subrange for that fluid, and have compared it to the inner scale for the neutral gas. The latter was found from the Kolmogorov microscale, which in turn depends on the energy dissipation rate in the gas. We found the dissipation rate from the spectral width of the 53.5 MHz backscatter signal and from the rocket electron density fluctuation data. The diffusive subrange was found to occur at a wavelength a factor of about 10 times smaller than the viscous subrange. This corresponds to a Schmidt number of about 100. High Schmidt numbers have been reported in recent measurements of the diffusion coefficient of the electrons in this height range made with the EISCAT incoherent scatter radar. About 15 min after the rocket flight an extremely high radar reflectivity was found with the SOUSY system. We have been able to reproduce this high level theoretically by scaling the rocket data with an increase in the neutral turbulence energy dissipation rate by a factor of 14 as deduced from the SOUSY spectral width, an increase in the electron density which is consistent with riometer data, and a 33% decrease in the electron density gradient scale length which is hypothesized. We also estimate the radar reflectivity at 933 MHz and conclude that signals in excess of thermal scatter levels would have occurred at the peak of the event studied, provided that the electron fluctuation spectrum decreases as k−7 in the viscous subrange. If the spectrum has an exponential form, however, a turbulent source cannot explain the enhanced 933 MHz echoes reported by EISCAT.  相似文献   

2.
During the period July–August 1991, observations were made of Polar Mesospheric Summer Echoes (PMSE) at 46.9 MHz and 224 MHz by the CUPRI and EISCAT radars, respectively, at two sites in northern Scandinavia. Those observations are compared here with observations of noctilucent clouds, energetic particle precipitation and magnetic disturbances. The appearance and morphology of PMSE are found to be closely correlated at the two frequencies and the two sites, 200 km apart. No correlation is found between PMSE and noctilucent clouds or magnetic disturbance. No correlation is found between energetic particle precipitation and the appearance of PMSE at 46.9 MHz for the whole time period. At 224 MHz, there is no evidence for a correlation before the beginning of August and only one event suggesting a possible correlation after the beginning of August. A minimum in occurrence frequency for PMSE is found between 16 and 21 UT (17–22 LST) which may be related to an expected minimum in background wind strength in that time interval.  相似文献   

3.
Polar mesosphere summer echoes observed with the EISCAT 224 MHz radar frequently exhibit significant discontinuous offsets or jumps in the Doppler frequency. We can explain these frequency jumps as a result of a lifting of partially reflecting or scattering layers, which are distorted by bumps. These bumps can be caused by steepened refractivity variations, i.e. reflectivity structures. These suggestions are supported by model computations. We also notice that a relation exists between these structure shapes and gravity waves, which are steepened, but which do not necessarily break into enhanced turbulent velocity fluctuations.  相似文献   

4.
We describe experiments carried out with the EISCAT VHF radar during the MAC/SINE campaign. These experiments included observations of the polar mesosphere summer echoes (PMSE), which were studied with a high spectral resolution program. The fine structure of the spectra imply that very thin and non-random transient structures of reflectivity occur frequently in the mesopause region. We find no clear relation between the echo power and the coherence time which could support the hypothesis of scatter from turbulence or partial reflection. In addition, the estimates of radar reflectivity let us discard incoherent scatter and pure turbulence scatter as the cause of the PMSE. We also discuss the relation of the PMSE and cluster ions, electric fields, charge accumulation and atmospheric gravity waves.  相似文献   

5.
The middle and upper atmosphere and the ionosphere at high latitudes are studied with the EISCAT incoherent scatter radars in northern Scandinavia. We describe here the investigations of the lower thermosphere and the E-region, and the mesosphere and the D-region. In the auroral zone both these altitude regions are influenced by magnetospheric processes, such as charged particle precipitation and electric fields, which are measured with the incoherent scatter technique. Electron density, neutral density, temperature and composition are determined from the EISCAT data. By measuring the ion drifts, electric fields, mean winds, tides and gravity waves are deduced. Sporadic E-layers and their relation to gravity waves, electric fields and sudden sodium layers are also investigated with EISCAT. In the mesosphere coherent scatter occurs from unique ionization irregularities. This scatter causes the polar mesosphere summer echoes (PMSE), which are examined in detail with the EISCAT radars. We describe the dynamics of the PMSE, as well as the combination with aeronomical processes, which could give rise to the irregularities. We finally outline the future direction which is to construct the EISCAT Svalbard Radar for studying the ionosphere and the upper, middle and lower atmosphere in the polar cap region.  相似文献   

6.
In an earlier paper, we showed that charged aerosols play a crucial role in enhancing radar echoes from the summer polar mesosphere through reduced diffusion turbulent scatter and dressed aerosol scatter (Cho et al., 1992a). Here, we explore the effects of charged aerosols on radar scatter through ‘fossil’ turbulence and electron density depletion layers. We find that the former can produce radar scatter even after the decay of neutral gas turbulence, while the latter, which are probably produced by the scavenging of free electrons by ice particles, are a candidate for causing partial reflection or Fresnel scatter. Furthermore, we examine the mutual aerosol interaction restriction on dressed aerosol scatter more closely. We find that a high ambient electron density and low aerosol number density are needed for effective dressed aerosol scatter to occur. We then show that very small (less than 1 nm radii), negatively charged aerosols enhance electron diffusivity, and thus inhibit radar scatter. Also, ice aerosol sedimentation, in the light of the reduced diffusion theory, leads us to conclude that the statistical peak in Polar Mesospheric Summer Echoes (PMSE) power should be located between the mean mesopause and the average noctilucent cloud (NLC) height, which agrees with observations. Finally, we invoke time lags in the ice particle formation cycle to account for the observed non-correlation between PMSE and NLC occurrence.  相似文献   

7.
The Saskatoon MF radar (2.2 MHz) at 52°N, 107°W, has been used to measure the heights of occurrence of radar scatter during four seasons, and twelve months of 1986/87. Mean winds, and gravity waves are also available, by the spaced antenna method and from the same radar echoes. Certain heights, called elsewhere ‘preferred heights’, are identified near 60km, 70km, 75km in summer, and 80–86 km. Several layers have seasonal and diurnal variations. Associations with electron density gradients (rocket data), mean wind shear in summer, and gravity wave amplitude-minima in the equinoxes are effectively demonstrated. Case studies, involving 3 h data sets of radar scatter and wind elaborate the comparison: gravity waves of long period (τ > 6 h) are shown to modulate the scattering process.  相似文献   

8.
The aspect sensitivity of the radar backscatter power at 46.5 MHz has been examined for the troposphere and lower stratosphere. Use is made of the width of the effective backscatter polar diagram, assumed to be Gaussian, derived from the ratios of signal strength for different pairs of beam directions in order to distinguish between anisotropic and isotropic scattering. The results are used to examine the relative contributions of isotropic scatter, anisotropic scatter, and Fresnel reflection or scatter to the signal backscattered in the vertical direction. Furthermore, the change in the scattering characteristics during the passage of a warm front is examined.  相似文献   

9.
The medium frequency radar (∼ 2.2 MHz) at Saskatoon has been run continuously since 1978 and the Meteor Radar at Monpazier ran continuously for ∼ 10 day intervals in most months of 1979/1980. The radars are separated by ∼ 8000 km. Because of the excellent quality of the data, spectral and harmonic analyses have been completed from ∼ 70 to 100km and oscillations with periods of ∼ 6h–6days studied.There are substantial similarities in the mean zonal winds, both with regard to magnitudes and times of seasonal reversals; also in annual and semi-annual oscillations. In general, the semi-diurnal tide has similar amplitudes, phases and vertical wavelengths : there are consistent summer (long λ) and winter (short λ) characteristics, with rapid transitions between them. Differences between the timing of these transitions and in some of the mid-season tides are discussed. The diurnal tide is less regular and of smaller amplitude at both locations, often being too small to reliably characterize at Monpazier. However, seasonal variations between summer and winter months may be discerned.In addition to the 24 and 12 h tidal oscillations, which traditionally are studied in most detail, there is clear evidence for additional osculations near 6,8, ∼ 10 and ∼ 16 h and longer periods of ∼ 2 and ∼ 5 days. The amplitudes of these are often comparable or larger than the ‘dominant’ 24 and 12 h tides. The monthly and seasonal variations of these additional oscillations are studied, as a function of height, at the two locations. There is evidence for large scale (global) and small scale (local) disturbances in the wind field.  相似文献   

10.
This paper reports the first successful gyro line experiment with the EISCAT VHF (224 MHz) radar. The incoherent scatter gyro line (also known as ‘resonance line’ and ‘whistler line’ in the literature) corresponds to the electrostatic wave mode ω ≈ Ω cos α known to be present in a weakly magnetized plasma (Ω is the electron gyro frequency and α is the angle between the scattering wave vector and the magnetic field). The line is very weak, but has the great advantage from an observational point of view that its position in the scattered spectrum is only marginally dependent on the electron density and temperature. This means that filter offsets can be easily predicted and that a long pulse and long integration times can be used in the experiment. Measurements were made at angles of 55 and 69° with the geomagnetic field where the gyro line frequencies are approximately 800 and 500 kHz, respectively. The line was seen in the altitude region 100–220 km, being most intense at 160–170 km. The strong dependence of the gyro line on the magnetic field may be used to study variations in the field. Other interesting aspects of the line to be investigated in future experiments are the effects of suprathermal particles, the possible effects of stimulated scattering, and the heating effects in an ionospheric modification experiment.  相似文献   

11.
12.
We report about a quantitative comparison of rocket observations of electron density fluctuations and simultaneous 53.5 MHz radar measurements that were obtained during the MAC/SINE campaign in northern Norway in summer 1987. Out of three rockets launched during the Tur-bulence/Gravity Wave salvo on 14 July 1987, two were flown during conditions that allowed a detailed investigation. For a large part of the data from these rocket flights it is found that the radar reflectivity is about 10 dB, enhanced over what would be expected from the rocket observations in the case of isotropic electron density fluctuations. The observations can be reconciled under the assumption of an anisotropic turbulence. Assuming a simple model spectrum for the electron density fluctuations, we derive a relation between the rocket and radar observations that covers the whole range from isotropic turbulent scatter to Fresnel scatter at horizontal density stratifications. For the observed dataset, an anisotropy which typically corresponds to a ratio of the horizontal to the vertical coherence length of about 10 is consistent with the comparison of rocket and radar observations. A similar anisotropy is found also from the observed aspect sensitivity of the radar echoes. The variation of the anisotropy with height and time shows an anticorrelation with the turbulence level of the mesosphere as deduced from the spectral width of the radar echoes. The anisotropy is found to maximize in heights where the electron density displays deep ‘bite-outs’. These depletions in the electron density were independently observed by a Langmuir and an admittance probe on board two of the rockets.  相似文献   

13.
Observations with a 46.5 MHz radar system at Aberystwyth (52.4°N, 4.1°W) have been used to examine the characteristics of echoes observed at heights above 80 km in daytime during the summer months of 1990–1992. Particular attention has been paid to the motion field observed during the two types of echo identified previously—spectrally broad, isotropic echoes observed between mid-May and early September, and spectrally narrow, anisotropic echoes observed on certain days in June and July. It has been found that both types of echo are associated with short-period gravity waves, those related to the spectrally narrow echoes being of smaller amplitude. The echoes are identified with isotropic and anisotropic turbulence, respectively, and data for days showing both types of echo have been used to examine the characteristic intervals of height and time over which a transition occurs.  相似文献   

14.
Using h'F data at two equatorial stations, night-time equatorial thermospheric meridional winds have been deduced for a period of two years to study their seasonal characteristics. It has been found that the thermospheric wind shows trans-equatorial flow from summer to winter hemisphere. During equinoxes the flow is mainly equatorward with a reversal to poleward direction around midnight hours. The abatement and reversal of equatorward wind which is weaker in summer compared to equinoxes is attributed to Midnight Temperature Maximum (MTM). The results of the present investigation are compared with those at other equatorial stations and also with the empirical model of Hedin et al. (1991).  相似文献   

15.
Results of the amplitude scintillation morphology of the HILAT satellite 137 MHz beacon transmission as measured at the Polish Polar Station at Hornsund, Spitsbergen (Δ = 73.4°) are presented. Seasonal, diurnal and latitudinal dependencies of scintillation intensity on magnetic activity were analyzed from over 2250 satellite passes recorded at solar minimum between April 1985 and March 1986. Regions with strong scintillation intensity appear to follow the auroral oval expansion and to move sunward with increasing level of magnetic activity. Maximum amplitude scintillation region coincides with the dayside cusp/cleft position during high magnetic activity. The dawn-dusk asymmetry in scintillation intensity is more distinct in winter than other months. The estimated summer/winter ratio of scintillation intensity is 1.4: 1. Numerical simulations compared with the observational results indicate that high latitude irregularities < 1 km are field-aligned and rod-like rather than sheet-like.  相似文献   

16.
Results from a partial reflection radar experiment, operated at a frequency of 2.9 MHz at Scott Base, Antarctica, are presented for the time interval from January 1987 to June 1991. It is shown that a layer of ionisation can frequently be identified at scattering heights between 40 and 55 km. Details regarding the maximum density, thickness, and frequency of occurrence of this ionisation layer are presented. From sequential occurrences of the ionisation an approximate life time of 70 min is deduced for the layer. The possibility that the ionisation layer is produced by a flux of relativistic electrons is investigated.  相似文献   

17.
Observations of the lower ionospheric disturbance caused by a low altitude nuclear explosion are presented. A forward scatter radar, frequency 41 MHz, power 2.5 kW, was used to study these disturbances. The first radar scattering signal consisting of three peaks appeared 40 s after the explosion. It was due to early ionization by delayed y-rays. The second kind of disturbance generated after 190 s was clearly different from the first. The scattering signal had a constant component which indicated a strong specular reflection. The field strength increased by more than 20 db. This disturbance was produced by the direct shock wave. The third kind of disturbance began after 8 min, lasted 5.0 min, and was probably dominated by the fireball/smoke cloud oscillation when it reached its stabilization altitude and approached hydrodynamical equilibrium with the ambient atmosphere. Using numerical computation techniques, we have explained the above results well.  相似文献   

18.
19.
Simultaneous recordings of the broadband electric field and HF radiation at 3 MHz were obtained at times before and after the onset of first and subsequent lightning strokes. Data are presented for several hundred negative ground flashes observed in Sri Lanka within a range of 40 km over the land and sea. The stepped leader gave rise to strong 3 MHz radiation, but the peak amplitude of the radiation was less than that of the return stroke. In the return stroke phase, 3 MHz radiation was strongest at the beginning of the first return stroke and gradually decayed completely. The mean duration of the 3 MHz continua of 346 first strokes was 190 μs (S.D. = 69 μs). In about 99% of the cases 3 MHz radiation in the return stroke phase was accompanied by a burst of multitudinous, fine oscillatory pulses on the broadband electric field. Subsequent strokes, in general, had no 3 MHz radiation in their return stroke phases.  相似文献   

20.
The diurnal, seasonal and solar cycle variations of Faraday polarization fluctuations (FPF) associated with amplitude scintillations observed at Lunping, Taiwan (25.0°N, 121.2°E : geographic) during the period 1978–1981 are presented. The occurrence of polarization fluctuations is maximum in the premidnight hours. FPFs occur either simultaneously or with a time lag after the onset of amplitude scintillations. There is an increase in FPF activity with an increase in sunspot activity. Occurrence of FPF peaks in the equinoxes. There had been a moderate activity in summer while the winter occurrence is a minimum. The seasonal occurrence pattern compared with reports from other locations indicates a longitudinal control on FPF activity. The maximum probable duration of FPF ranges from 15 to 30 min. It was found that the association of FPF with range spread-F is much better than that with frequency spread-F. Large ambient ionization densities corresponding to plasma frequencies greater than 15 MHz appear to create a favourable environment for the occurrence of FPF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号