首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate the particles which produce the polar cap aurora at the Vostok station in Antarctica, charged particle data obtained by the DMSP satellites for some days in a period from April to August 1985 were surveyed. Due to the satellite orbit the local time range in which the data were available was the morning sector. For all the events when sun-aligned arcs were observed on the ground the simultaneous DMSP measurements on almost the same field line showed an increased integral number flux J. > 108 (cm8/s/sr)−1 of the precipitating electrons with energy Ee > 200 eV. The electron spectra with double peaks are typical of intense electron precipitation in the polar cap arcs. The most noticeable feature of ion spectra in the polar cap arcs is the prominent minimum in ion flux in the energy range 0.1 < Ei < 1 keV in contrast with the oval precipitation ; this feature gives the possibility to separate the polar arcs from the aurora in the oval. In some events the satellite crossed the system of two widely separated arcs ; one of them was a sun-aligned arc whereas the other was circular at constant latitude according to the Vostok data. The analysis of the DMSP electron and ion precipitation data has shown that in these events the latitude-oriented arcs are located in the polar cap and not in the auroral oval.  相似文献   

2.
Electron density profiles in the night-time auroral ionosphere were obtained with the incoherent-scatter radar at Chatanika, Alaska, during short duration precipitation events characterized by riometer data as spike events. The measurements show exceptionally large electron densities in the D-region during spike events, the electron density typically exceeding 106 cm3 at 90 km altitude for a short time. The existence of a steep horizontal gradient, particularly on the poleward edge of the event, is inferred. The altitude and thickness of the absorbing layer are deduced. It is shown that 20–40 keV electrons make the greatest contribution to an absorption spike and that the spectrum of electrons producing such an event is probably softer than that producing a more slowly varying absorption peak. These absorption layers are too high for their altitudes to be measured by the technique of multi-frequency riometry.  相似文献   

3.
The flux and pitch angle distribution of energetic electrons near the loss cone have been investigated over the energy range 15–300 keV, using measurements on the geosynchronous satellite GEOS-2 at the times of auroral radio absorption events detected by riometers in Scandinavia. It is shown that conditions of strong pitch angle diffusion apply only during the most intense absorption events ( 6 dB at 30 MHz) which are relatively infrequent. During most events the loss cone is partially depleted, with the degree of depletion increasing as the absorption becomes weaker. The variation of the pitch angle diffusion coefficient with the observed radio absorption is estimated. A consequence of loss cone depletion is a tendency to overestimate the smaller events when computing the radio absorption from flux measurements in the 0°–5° range of detector pointing angles. An empirical law is derived which enables the computation of radio absorption consistent with measurements. D-region recombination laws are discussed and limits are set on the height profile of the effective recombination coefficient.  相似文献   

4.
During many magnetospheric substorms, the auroral oval near midnight is observed to expand poleward in association with strong negative perturbations measured by local ground magnetometers. We show Sondrestrom and EISCAT incoherent scatter radar measurements during three such events. In each of the events, enhanced ionization produced by the precipitation moved northward by several degrees of latitude within 10–20 min. The electric fields measured during the three events were significantly different. In one event the electric field was southward everywhere within the precipitation region. In the other two events a reversal in the meridional component of the field was observed. In one case the reversal occurred within the precipitation region, while in the other case the reversal was at the poleward boundary of the precipitation. The westward electrojet that produces the negative H-perturbation in the ground magnetic field has Hall and Pedersen components to varying degrees. In one case the Hall component was eastward and the Pedersen component was westward, but the net magnetic H-deflection on the ground was negative. Simultaneous EISCAT measurements made near the dawn meridian during one of the events show that the polar cap boundary moved northward at the same time as the aurora expanded northward at Sondrestrom. Most of the differences in the electrodynamic configuration in the three events can be accounted for in terms of the location at which the measurements were made relative to the center of the auroral bulge.  相似文献   

5.
Measurements of precipitating particles on board DMSP F7 spacecraft are used to analyze the distribution of ionospheric conductance in the midnight auroral zone during substorms. The distribution is compared with the meridional profile of ionospheric currents calculated from magnetic data from the Kara meridional chain. Two regions of high Hall conductance are found; one of them is the traditional auroral zone, at latitudes 64–68°, and the other is a narrow band at latitudes 70–73°. The position of high conductance zones is in agreement with the location of the intense westward currents. The accelerated particle population is typical of electrons Ee > 5 keV in the high conductance region.  相似文献   

6.
We present an interpretation, which differs from that commonly accepted, of several published case studies of the patterns of auroral electron precipitation into the high-latitude upper atmosphere in the near-midnight sector based on their mapping to the nightside magnetosphere. In our scheme bright discrete auroral structures of the oval and respective precipitation are considered to be on the field lines of the Central, or Main, Plasma Sheet at distances from 5–10 to 30–50 RE, depending on activity. This auroral electron precipitation pattern was discussed in detail by Feldstein and Galperin [(1985) Rev. Geophys.23, 217] and Galperin and Feldstein [(1991) Auroral Physics, p. 207. Cambridge University Press. It is applied and shown to be consistent with the results of case studies based on selected transpolar passes of the DE, DMSP, AUREOL-3 and Viking satellites.A diagram summarising the polar precipitation regions and their mapping from the magnetospheric plasma domains is presented. It can be considered as a modification of the Lyons and Nishida (1988) scheme which characterizes the relationship between the gross magnetospheric structure and regions of nightside auroral precipitation. The modification takes into account non-adiabatic ion motions in the tail neutral sheet, so that the ion beams characteristic of the Boundary Plasma Sheet (BPS) originate on closed field lines of the distant Central Plasma Sheet (say, at distances more than ~30 RE).  相似文献   

7.
Height-integrated electrical conductivities (conductances) inferred from coincident Sondrestrom incoherent scatter radar and DMSP-F7 observations in the high-latitude ionosphere during solar minimum are compared with results from photoionization models. We use radar and spacecraft measurements in combination with atmospheric and ionospheric models to distinguish between the contributions of the two main sources of ionization of the thermosphere, namely, solar UV/EUV radiation and auroral electron precipitation. The model of Robinsonet al. (1987, J. geophys. Res.89, 3951) of Pedersen and Hall conductances resulting from electron precipitation appears to be in accordance with radar measurements. Published models of the conductances resulting from photoionization that use the solar zenith angle and the solar 10.7-cm radio flux as scaling parameters are, however, in discrepancy with radar observations. At solar zenith angles of less than 90°, the solar radiation components of the Pedersen and Hall conductances are systematically overestimated by most of these models. Geophysical conditions that have some bearing on the state of the high-latitude thermosphere (e.g. geomagnetic and substorm activity and a seasonal variation of the neutral gas distribution) seem to influence the conductivity distribution but are to our knowledge not yet sufficiently well modelled.  相似文献   

8.
The Arecibo Initiative in Dynamics of the Atmosphere (AIDA) '89 was a multi-instrument campaign designed to compare various mesospheric wind measurement techniques. Our emphasis here is the comparison of the incoherent scatter radar (ISR) measurements with those of a 3.175 MHz radar operating a s an imaging Doppler interferometer (1131). We have performed further analyses in order to justify the interpretation of the long term IDI measurements in terms of prevailing winds and tides. Initial comparison of 14 profiles by Hines et al., 1993, J. atmos. terr. Phys. 55, 241–288, showed good agreement between the ISR and IDI measurements up to about 80 km, with fair to poor agreement above that altitude. We have compiled statistics from 208 profiles which show that the prevailing wind and diurnal and semidiurnal tides deduced from the IDI data provide a background wind about which both the IDI and ISR winds are normally distributed over the height range from 70 to 97 km. The 3.175 MHz radar data have also been processed using an interferometry (INT) technique [Van Baelen and Richmond 1991, Radio Sts. 26, 1209–1218] and two spaced antenna (SA) techniques [Meek, 1980, J. atmos. terr. Phys. 42, 837–839; Briggs. 1984, MAP Handbook, Vol. 13, pp. 166–186] to determine the three dimensional wind vector. These are then compared with the IDI results. Tidal amplitudes and phases were calculated using the generalized analysis of Groves, 1959, S. atmos. terr. Phys. 16, 344–356, historically used on meteor wind radar data. Results show a predominance of the diurnal S11 tidal mode in the altitude range 70–110 km, reaching a maximum amplitude 45 ms−1 at 95 km, with semidiurnal amplitudes being about 10–15 ms−1 throughout the height range considered. There is evidence of the two day wave in data from 86–120 km, with amplitudes on the order of 20 ms−1.  相似文献   

9.
Two rockets bearing quadrupole mass spectrometers capable of measuring both positive and negative ion composition were launched from Red Lake, Canada, during the solar eclipse. Both instruments had liquid helium cryopumps and shock-attaching conical samplers. The payloads also contained two Gerdien condensers to measure total positive and negative ion concentrations and ion mobilities. Attitude control systems aligned the payloads with the velocity vector throughout ascent and descent. The first rocket was launched so that the D-region was in darkness 35 ± 8 s on the upleg and about 150 ± 15 s on the downleg for the study of ionospheric decay processes. The second rocket was fired after totality into 75% solar illumination for the study of ionospheric recovery. The positive ion composition above 105 km exhibited a strongly increasing NO+/O2+ ratio with time after second contact due to O2+ charge transfer with NO and a sharply diminished ionization rate. However, in both nights, the ionization below 105 km was created mainly by energetic particle deposition as exemplified by the increased ion concentrations and the composition signatures of a particle event: asignificant enhancement of O2+ below 105 km and large amounts of H5O2+ ions in the D-region which result from the O2+ clustering scheme. H5O2 was the major ion in the upper D-region while H7O+3, H9O4+ and H5O2+ were dominant ions at lower altitudes. Numerous minor species were also detected. The negative ion distributions in both flights exhibited a distinct shelf at 83 ± 2 km, decreasing by more than an order of magnitude by 90 km and with minima near 75 km. In the 75–90 km range, a significant percentage of the negative ions had masses exceeding 160 a.m.u. Comparisons are made with prior negative ion measurements during similar daytime auroral zone absorption (AZA) events. Two striking characteristics of the precipitating particles were apparent from these and past observations in daytime AZA events: there is a near absence of low energy electrons capable of ionizing above about 105 km and there is'a significant spatial and/or temporal variability in the electron flux. This paper is devoted principally to a presentation of the ion composition measurements and associated uncertainties.  相似文献   

10.
The Grande Aula, or Great Hall, of the Markets of Trajan (AD 96 to 115) is an intact example of the domed, concrete architecture of imperial Rome. Petrographic, x-ray diffraction, chemical, and SEM analyses demonstrate that wall mortars contain Pozzolane Rosse volcanic ash aggregate (harenae fossiciae) and strätlingite, a complex calcium aluminate cement hydrate (C2 ASH8) that gives modern cements good durability and compressive strength. Specific gravity tests and a new petrographic method for assessing bulk densities indicate unit weights of about 1750 kg/m3 for the wall mortars and 1430–1640 kg/m3 for the pumice bearing, vaulted ceiling mortars. Innovative point load source tests record the tensile strengths (ft) of the aggregate and interfacial elements of the conglomeratic concrete fabric. These suggest ft of about 2.7 MPa for brick, 1.2 MPa for Tufo Lionato tuff, and 0.9 MPa for Tufo Giallo della Via Tiberina tuff coarse aggregate (caementa), based on a tentative, approximate correlation with splitting (Brazilian) tests. The pozzolanic mortar and interfacial zones have lower ft in the range of 0.8 MPa to 0.5 MPa. The relatively low mortar strength and its somewhat tenuous adhesion to the coarse aggregate suggests that the caementa may have arrested the propagation of tensile microcracks that formed in the mortar, thereby increasing the composite tensile strength of the concrete. Roman builders selected the complex aggregate mixes to optimize the performance of the wall and vault concretes.  相似文献   

11.
The relative importance of the equatorial plasma fountain (caused by vertical E x B drift at the equator) and neutral winds in leading to the ionospheric variations at equatorial-anomaly latitudes, with particular emphasis on conjugate-hemisphere differences, is investigated using a plasmasphere model. Values of ionospherec electron content (IEC) and peak electron density (Nmax) computed at conjugate points in the magnetic latitude range 10–30° at longitude 158°W reproduce the observed seasonal, solar activity, and latitudinal variations of IEC and Nmax, including the conjugate-hemisphere differences. The model results show that the plasma fountain, in the absence of neutral winds, produces almost identical effects at conjugate points in all seasons; neutral winds cause conjugate-hemisphere differences by modulating the fountain and moving the ionospheres at the conjugate hemispheres to different altitudes.At equinox., the neutral winds, mainly the zonal wind, modulate the fountain to supply more ionization to the northern hemisphere during evening and night-time hours and, at the same time, cause smaller chemical loss in the southern hemisphere by raising the ionosphere. The gain of ionization through the reduction in chemical loss is greater than that supplied by the fountain and causes stronger premidnight enhancements. in IEC and Nmax (with delayed peaks) in the southern hemisphere at all latitudes (10–30°). The same mechanism, but with the hemispheres of more flux and less chemical loss interchanged, causes stronger daytime IEC in the northern hemisphere at all latitudes. At solstice, the neutral winds, mainly the meridional wind, modulate the fountain differently at different altitudes and latitudes with a general interhemispheric flow from the summer to the winter hemisphere at altitudes above the F-region peaks. The interhemispheric flow causes stronger premidnight enhancements in IEC and Nmax and stronger daytime Nmax in the winter hemisphere, especially at latitudes equatorward of the anomaly crest. The altitude and latitude distributions of the daytime plasma flows combined with the longer daytime period can cause stronger daytime IEC in the summer hemisphere at all latitudes.  相似文献   

12.
We compare the DE-2 electric field measurements used by Heppner and Maynard [(1987) J. geophys. Res.92, 4467] to illustrate strongly distorted, BC convection patterns for IMF Bz > 0 and large |By|, with simultaneous detections of particle spectra, plasma drifts and magnetic perturbations. Measured potentials >50 keV, driven by the solar wind speeds exceeding 500 km/s, are greater than published correlation analysis predictions by up to 27%. The potential distributions show only two extrema and thus support the basic conclusion that under these conditions the solar wind/IMF drives two- rather than fourcell convection patterns. However, several aspects of the distorted two-cell convection pattern must be revised. In addition to the strong east-west convection in the vicinity of the cusp, indicated by Heppner and Maynard, we also detect comparable components of sunward (equatorward) plasma flow. Combined equipotential and particle precipitation distributions indicate the presence of a lobe cell embedded within the larger, afternoon reconnection cell. Both types rotate in the same sense, with the lobe cell carrying 20–40% of the total afternoon cell potential. We detected no lobe cell within morning convection cell.  相似文献   

13.
The magnetic field expressions from the current ribbon and thick current versions of the continuous distribution of current density model and their merits have been presented. For the first time both the latitudinal and vertical parameters of the equatorial electrojet (EEJ) have been derived from the same set of data. The local noon and daytime means of certain key parameters of the EEJ are shown to be in good agreement with those from other sources. Selected local noon means include: peak current density jo, 10.58 ± 0.34 A/km2; peak current intensity jo, 224 ± 9 A/km; total eastward current I+, 74 ± 5 kA ; EEJ current focal distance w, 300 ± 5 km ; half thickness at half of peak current density p, 7.0 ± 0.1 km; peak westward current location xm, 5.13 ± 0.08° dip latitude; and EEJ latitudinal extent L1, 12 ± 1° dip latitude. The problem of model calculated landmark distances of EEJ being consistently shorter than observations, encountered by Onwumechiliet al. [J. geomagn. Geoelecl. 41, 443 (1989)] has been solved.  相似文献   

14.
In a previous paper we demonstrated a method by which the auroral radio absorption measured with a riometer can be predicted from energetic electron measurements at geosynchronous orbit. The present paper enquires to what extent the process can be inverted: what levels of magnetospheric electron flux, and of D-region production rate, electron density and incremental absorption, are predicted by a given measurement of radio absorption and what reliance can be placed on such predictions?Using data from 45 precipitation features recorded with riometers in Scandinavia and at geosynchronous orbit with GEOS-2, it is shown that electron fluxes in the ranges 20–40,40–80 and 80–160 keV increase with increasing absorption and can be predicted to better than 50% for absorption events of 2 dB or greater. Electrons above 160 keV show little or no correlation with absorption. D-region production rates and electron densities can be predicted to within factors of 2 and √2, respectively.It is more difficult to specify the height of the absorbing region because of uncertainly in the profile of the effective recombination coefficient. Having regard to other data, an αeff profile is proposed which satisfies rocket and incoherent scatter data as well as the present calculations. It is shown that any day-night variation in auroral absorption is associated with a change of spectrum rather than a change of recombination coefficient.  相似文献   

15.
A series of experiments was carried out in 1983–1985 to investigate precipitation of radiation belt electrons by Omega Australia onto the great circle path from the 22.3 kHz NWC transmitter (North West Cape, Australia) to Dunedin, New Zealand. These were similar in concept to the experiment described by Inan [(1990), Geophys. Res. Lett. 17, 729] using the NAU transmitter to induce electron precipitation onto the great circle path from the 24.0 kHz NAA transmitter (Maine) to Palmer Station (PA), Antarctica. Unlike the perturbations received by Inan which indicated only heating effects by the NAU transmitter, our observations showed both a delayed modulation expected of electron precipitation effects and the prompt modulation expected of heating effects. However, we were able to duplicate (and explain) the prompt modulation effect using a local signal generated in our laboratory which thereby throws doubt on the validity of this effect in both experiments.  相似文献   

16.
Measurements of auroral-zone X-rays during rocket flights over Alaska in March 1978 have been analyzed to obtain angular distributions of electron bremsstrahlung in the atmosphere at altitudes of 45–65 km. The rockets carried passively collimated sodium iodide scintillation detectors which recorded X-rays in four energy ranges: > 5 keV, > 10 keV, > 20 keV and > 40 keV. Widespread precipitation events typical of post-breakup auroral activity have been examined. These measurements were made possible on two rocket flights: for one, large amplitude oscillations of the payload with respect to the vertical following parachute deployment allowed sampling of the angular distribution in the upper hemisphere (downward propagating X-rays), while on the other rocket, failure of the parachute system resulted in a tumbling motion of the payload which permitted measurements in both hemispheres (nadir/zenith). The observations reveal an angular distribution for X-rays in the atmosphere at depths (45–65 km) well below the production region, which is approximately isotropic in both hemispheres but with energy dependent ratios of the up/down components; the upward (backscattered) component is a small fraction (1–10%) of the total X-ray flux for 5–40 keV at the greatest altitude examined (65 km). At energies below 40 keV the energy spectrum for downward propagating X-rays hardens rapidly with increasing atmospheric depth, due to the photoelectric absorption at low energies, whereas the backscattered spectrum hardens only slightly in the middle atmosphere, maintaining an equilibrium-like form of diminishing intensity with depth. The present experimental results, apparently unique, are compared with theoretical calculations concerning the angular distribution of atmospheric bremsstrahlung.  相似文献   

17.
A brief outline is given of the experimental technique used during the Cold Arctic Mesopause Project to record the first D-region ion line spectra with the EISCAT incoherent scatter radar. The data analysis shows that echoes from mesospheric heights between about 70 km and 90 km can be detected during disturbed periods of enhanced electron density during particle precipitation events. Electron density profiles were determined which show a fairly high density, up to 5 × 1010 m−3 in the upper D-region. The measured meridional winds were lower than 10 m s−1. A fit of the measured height profile of spectral width to temperature and neutral density models yielded a measured temperature profile in good agreement with simultaneous rocket data. The mesopause temperature was determined to be as low as 130 K. This detailed analysis of the spectral width profile indicates that below about 77–80 km the ratio of negative ions to electrons exceeded unity. Finally, some discussions are added on the limitations and significance of these first mesosphere observations.  相似文献   

18.
The previous dynamical, computer simulation model of the ionosphere at low latitudes of Chan H. F. and Walker G. O. (1984a, J. atmos. terr. Phys. 46, 1103; 1984b, J. atmos. terr. Phys. 46, 1113) has been modified to (1) include photoionization of molecular species NO+, N2+ and O2+ below 300km, (2) decouple the ionization and wind calculations below 180 km and (3) expand the geographical coverage to 46°N-30°S latitude. The first two modifications improved the model stability and the latter reduced the effect of the lateral boundaries on the equatorial anomaly. Results are presented for the representative seasonal months of January, April and July for East Asia, during solar minimum, comprising latitudinal-local standard time (120°E) contour plots of (1) the atmospheric pressure, (2) the computed meridional wind at 300 km, (3) the foF2 and (4) hmF2, together with latitudinal profiles of foF2 and NT (electron content) showing the daytime development and nighttime decay of the equatorial anomaly.Comparisons have been made between the computer simulations and various experimental measurements of foF2, M(3000) F2 and NT obtained in East Asia during periods of low solar activity. Most of the gross features of the development and decay of the equatorial anomaly at the various seasons were reproducible by the model simulations, the best agreement occurring for the equinoctial month of April.  相似文献   

19.
A three-dimensional simulation of the high-latitude ionosphere was applied to investigate the geographical distribution of E-region thin ionization layers which may be formed by the action of the convection electric field. The simulation model computes the ion densities (O+, O+2, N+, N+2, NO+, Fe+), and temperatures as a function of altitude, latitude, and longitude. The stationary state momentum and continuity equations are solved for each ion species, then the energy equation is solved for electrons, neutrals, and a generic ion having the mean ion mass and velocity. The various electric field patterns of the Heppner and Maynard [(1987) J. geophys. Res.92, 4467–4489] convection electric field model were applied and the ionization density pattern was examined after a time sufficient for the formation of thin layers (≈2000 s). It was found that large areas of thin ionization layers were formed for each of the electric field patterns examined. Southward IMF Bz conditions resulted in thin layers forming in the pre-midnight sector in the latitude range north of about 70° to about 80°, and after midnight between 60 and 70°. For northward Bz conditions, the layers were mainly in the pre-midnight sector and covered a latitude range from about 60 to 80°.  相似文献   

20.
The magnetopause and adjacent boundary layers of the Earth's magnetosphere play important roles in transferring momentum and energy from the solar wind to the magnetosphere-ionosphere system. The details of the different boundary processes, their ionospheric signatures and relative importance are not well known at present. Particle precipitation, field-aligned current, auroral emission, ionospheric ion drift and ground magnetic perturbations are among the low-altitude parameters that show signatures of various plasma processes in the LLBL and the magnetopause current layer. Magnetic merging events, Kelvin-Helmholtz waves, and pressure pulses excited by the variable solar wind/magnetosheath plasma are examples of boundary phenomena that may be coupled to the ionosphere via field-aligned currents. In this paper, attention is focussed on a specific category of auroral activity occurring in the cusp/cleft region predominantly during the southward directed interplanetary magnetic field (IMF). Co-ordinated observations from the ground and satellites in polar orbit have been used to study the temporal/spatial development of the events in relation to the background patterns of particle precipitation and ionospheric convection as well as the field-aligned current and ion drift characteristics of the individual events. The auroral phenomenon is characterized by a sequence of elongated forms moving laterally into the polar cap. Spatial scales of major events repeating every 5–10 min are ∼200 km (N-S) times 300–1000 km (E-W). Smaller scale auroral structures with more irregular occurrence rates are observed at times. The preliminary evidence suggests that the motion pattern is regulated by the IMF orientation, that is, the direction of longitudinal motion along the polar cap boundary is determined by the IMF BY polarity. The examples reported here occurred within 1000–1400 MLT, near the zero point potential line separating the morning and post-noon convection cells. During nonzero IMF BY the auroral structures are associated with channels of enhanced zonal ionospheric ion flow and Birkeland current sheets of opposite polarity, imbedded within the larger scale IMF BY-related cusp-mantle current system. These characteristics are discussed in relation to model predictions of ionospheric signatures of magnetopause plasma transients, with particular emphasis placed on impulsive magnetic merging events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号