首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intervals of F-region electron density depletions associated with the main (mid-latitude) ionospheric trough have been studied using latitude scanning experiments with the EISCAT UHF radar. From 450 h of measurements over a one year period at solar minimum (April 1986–April 1987) the local time of appearance of the trough at a given latitude is observed to vary by up to about 8 h. No seasonal dependence of location is apparent, but troughs are absent in the data from summertime experiments. A weak dependence of trough location on Kp is found, and an empirical model predicting the latitude of the trough is proposed. The model is shown to be more appropriate than other available quantitative models for the latitudes covered by EISCAT. Detailed studies of four individual days show no relationship between local magnetic activity and time of observation of the trough. On all four of these days, however, the edge of the auroral oval, evidenced by enhanced electron densities in the E-region, is found to be approximately co-located with, or up to 1° poleward of, the F-region density minimum. Simultaneous ion drift velocity measurements show that the main trough is a region of strong (> several hundred metres per second) westward flow, with its boundary located approximately 1°–2° equatorward of the density minimum. Within the accuracy of the observations this relationship between the convection boundary, the trough minimum and the precipitation boundary is independent of local time and latitude. The relevance of these results is discussed in relation to theoretical models of the F-reregion at high latitudes.  相似文献   

2.
A study has been made of data taken with EISCAT using the Common Program CP-3-C (F-region meridian scan) which shows that regions of enhanced ion temperature (in excess of 3000K at all three EISCAT stations) are found on most days when Kp exceeds 2 or 3, usually accompanied by ion drift velocities of more than 1 km s−1. These periods are often accompanied by anisotropy of the ion temperature and abnormally low apparent electron temperature, consistent with the presence of a non-Maxwellian ion velocity distribution such as would result from large but not exceptional ion drifts. Data for a selected period have been fitted using theoretical ion velocity distributions based on the relaxation collision model and assuming that the ion composition is 100% O+. The results confirm the presence of non-Maxwellian distributions, but a detailed comparison with theory reveals some discrepancies, indicating that the analysis may need to be extended to include effects due to, for example, molecular ions and instabilities.  相似文献   

3.
Results are presented from a coordinated experiment involving scintillation observations using transmissions from NNSS satellites and simultaneous measurements with the EISCAT ionospheric radar facility. The scintillation was used to indicate the presence of sub-kilometre scale irregularities while the radar yielded information on the larger structures in the background ionosphere. Two examples are discussed in which localised patches of scintillation were observed at L-shells near ‘blob’ like enhancements in F-region ionisation density. Elevated electron temperatures indicated that the enhancements may have had their origins in soft particle precipitation. While structuring of the precipitation on the 100 m scale cannot be completely ruled out as a source of the irregularities, in one case the blob gradient can be shown to be stable to the E λ B mechanism. The most likely cause of the irregularities appears to be shearing of the high velocity plasma flow in a region adjacent to the density enhancement. This region is characterised by a high ion temperature while the resulting scintillation has a shallow spectral slope.  相似文献   

4.
An intense solar proton event causing enhanced ionization in the ionospheric D-region occurred on 12 August 1989. The event was partially observed during three successive nights by the EISCAT UHF incoherent scatter radar at Ramfjordmoen near Tromsa, Norway. Ion production rates calculated from GOES-7 satellite measurements of proton flux and a detailed ion chemistry model of the D-region are used together with the radar data to deduce electron concentration, negative ion to electron concentration ratio, mean ion mass and neutral temperature in the height region from 70 to 90 km, at selected times which correspond to the maximum and minimum solar elevations occurring during the radar observations. The quantitative interpretation of EISCAT data as physical parameters is discussed. The obtained temperature values are compared with nearly simultaneous temperature measurements at Andøya based on lidar technique.  相似文献   

5.
The EISCAT Common Programme can be used in three ways to monitor tidal oscillations in the lower thermosphere. In Common Programme One (CPI) tristatic observations provide measurements of the ion-velocity vector at several heights in the E-region and one height in the F-region. In Common Programme Two (CP2) monostatic measurements give profiles of ion velocity in the E-region while tristatic measurements give continuous measurements of ion velocity in the F-region. From the ion velocities and the ion-neutral collision frequency, the vector of the E-region neutral wind can be determined and both east-west and north-south components of the diurnal, semi-diurnal and ter-diurnal oscillations can be identified. CP1 and CP2 also provide profiles of the field-aligned ion velocity, and these can be used to calculate the north-south component of the neutral wind without knowing the ion-neutral collision frequency, but the result is affected by any vertical component of neutral velocity. The three methods are compared and the advantages of CP2 demonstrated.  相似文献   

6.
The quiet night-time E-region at high latitudes has been studied using the EISCAT UHF radar. Data from three subsequent nights during a long period of low magnetic activity are shown and typical features of electron density are described. The background electron density is observed to be 5·109 m−3 or smaller. Two types of enhancements above this level are observed ; one is due to charged particle precipitation associated with the F-region trough and the other is composed of sporadic-E layers due to waves in the neutral atmosphere. The sporadic-E is observed to exist almost continuously and to exhibit a regular diurnal behaviour. In addition to the typical afternoon and morning sequential layers, a third major descending layer is formed at night after the passage of the F-region trough The afternoon layer disappears simultaneously with the enhancement of the northward trough-associated electric field and the night-time layer appears at high altitudes after the field has again been reduced to a small value. It is suggested that metal ions from low altitudes are swept by the electric field to the upper E-region where they are again compressed to the night-time layer. A set of steeply descending weaker layers, merging to the main night-time layer are also observed. These layers are most probably caused by atmospheric gravity waves. Theoretical profiles for molecular ions indicate that the strongest layers are necessarily composed of metal ions but, during times when the layers are at their weakest, they may be mainly composed of molecular ions.  相似文献   

7.
On the evening of 13 January 1983 we made simultaneous observations of optical and radar aurora using low light television cameras together with the EISCAT radar system. At 19 h 16 m 06 s UT an extremely bright auroral arc moved rapidly (about 2 km s−1) through the EISCAT radar beam. The associated rapid rise and fall in the E-region electron density indicates that there was an intense narrow electron beam associated with the optical arc. We estimate that the ionisation rate in the E-region increased at least 20-fold (from 1 × 1010 m−3 s−1 to >2 x 1011 m−3 s−1) for 1 or 2 s as the arc passed by. In addition, there was a brief (<4 s) increase of 130% in the signal returned from 250 km altitude which coincided with the arc crossing the radar beam at that height. In view of this coincidence, we find that a possible explanation is that the increase arose from short-lived molecular ions, for example vibrationally excited N+2 ions, produced in the F-region by soft precipitation associated with the arc.  相似文献   

8.
Measurements of the E-region electron density were made with the Saint-Santin incoherent scatter radar during consecutive days in June 1978, March 1979 and December 1980. On the basis of a statistical study, the observations show the presence of a diurnal asymmetry of the electron density, with morning values usually exceeding the afternoon densities by 3–20%. Two possible causes of the dissymmetry are examined: the asymmetry in the diurnal variation of the neutral composition and the effect of nitric oxide. The presence of NO partly converts O2+ into NO+ ions and increases the effective recombination rate of the electrons in the afternoon. Numerical simulations assessing the relative importance of the two factors are, in general, in good agreement with the measurements.  相似文献   

9.
Observations made on 10 July 1987 with the EISCAT UHF radar are presented. The F-region measurements of both electron density and field-aligned ion velocity show that an upward propagating gravity wave with a period of about 1 h is present. The origin of the gravity wave is probably auroral. The E-region ion velocities show a tidal wave and both upward and downward propagating gravity waves. The gravity waves have three dominant periods with a possible harmonic relationship and similar vertical wavelengths. These waves are either reflected at a single reflection level, ducted between two levels, or they are generated in a non-linear interaction between gravity and tidal waves. The E-region electron density is dominated by particle precipitation. After a short burst of more intense precipitation, a sporadic E-layer forms at 105km and then disappears 40min later. Within this time, the layer rises and falls by a few kilometres, following closely the motion of a convergent null in the velocity profile. We suggest that the formation and destruction of this layer is controlled by both the precipitation, which indirectly provides a source of metal ions through charge exchange, and the superposition of gravity waves and the tidal wave.  相似文献   

10.
During July 1987 the EISCAT radars were used to study thin layers in the ionospheric E-region. This paper outlines the observing campaign, describes the GEN-type radar program used for the UHF experiments, and discusses the ‘descending’ or ‘sequential’ layer observed on the afternoon of 12 July during a period of strong wave activity, which could be traced throughout the whole E-F1 transition region. Following the descent of one particularly marked wave, a thin layer developed around 120 km height and lasted about 100 min, with temporary disappearances and periods of upward motion which were related to variations of field aligned ion velocity, and in particular to ‘convergent nulls’ in the velocity profile. The layer was eventually dispersed by a rapid upward surge of ion velocity. Composition analysis shows that the layer contains both long-lived light ions and heavy ions, most probably Fe+.  相似文献   

11.
Measurement of the observed anti-correlation between the field-perpendicular component of F-region plasma velocity in the north-south plane and the downward, field-parallel component has been proposed as a way to determine the value of the O-O+ collision frequency. However, random noise errors in measurements of plasma velocity made at EISCAT may combine in analysis to induce a spurious anti-correlation between the derived values of these components which is hard to distinguish from any genuine anti-correlation.  相似文献   

12.
During relative drifts between the ions and the neutrals perpendicular to the geomagnetic field, the ion temperature in the auroral F-region becomes anisotropic with a higher temperature perpendicular than parallel to the magnetic field (T >T). It has been shown that for a gyrotropic ion velocity distribution the ion temperatures T and T can be expressed as a function of the neutral temperature and of the squared normalized relative ion-neutral drift, with parameters β and β describing the anisotropy and the collision process.In this paper, five increases of the F-layer ion temperature and ion drift velocity, found in EISCAT-CP1F data, were analyzed to obtain information about the anisotropy and the collision process. In the CP1F experiment, the angles between the magnetic field line ending in Tromsø and the antenna directions remain small, and the ion drift velocities of the investigated events in general were below 1500 m/s. Thus the ion velocity distributions were approximated by a bi-Maxwellian, and NO+ was assumed to remain a minor constituent at the F-layer maximum. For a quantitative analysis, generalized theoretical β-values for a bi-Maxwellian ion velocity distribution drifting through a mixture of different neutral components and for arbitrary observation directions were calculated. With these expressions it was possible to compare the drift dependence of the measured ion temperature for every antenna position directly with the theory. A statistical analysis of the heating events showed a good correlation between the ion temperatures of Tromsø, Kiruna and Sodankylä and the squared normalized ion drift, and values βT, βK, βS could be calculated by linear regression. The fitted curves corresponded well with theoretical curves for a bi-Maxwellian velocity distribution of O+ ions drifting through a neutral atmosphere consisting of O and N2.  相似文献   

13.
This paper discusses the results from four rocket experiments conducted from Thumba, India, during the Indian Middle Atmosphere programme (IMAP). These rockets carried instrumented Gerdien Condenser payloads to measure ion densities and their mobilities. In the first two flights only positive ion measurements were attempted while the other two measured both positive and negative ion values. The results show that the positive ion density profiles go through a minimum around 62 km, as expected from the ion production models for this region. The ion density distribution is a function of solar zenith angle. An asymmetry with respect to noon is seen in these measurements, which is not expected theoretically. The positive ion mobilities indicate the ions to be water clusters, of the type H+ (H2O)n with n = 2 or 3, similar to the earlier reported ones. The negative ion density profile exhibits a maximum around 85 km, which is not predicted by the currently available ion density models and theories of D-region ionisation processes. The negative ion mobility measurements show the ions to have a mass range of 30–60 amu, which is within the range of mass spectrometric measurements.  相似文献   

14.
The E-region Rocket/Radar Instability Study (Project ERRRIS) investigated in detail the plasma instabilities in the low altitude (E-region) auroral ionosphere and the sources of free energy that drive these waves. Three independent sets of experiments were launched on NASA sounding rockets from Esrange, Sweden, in 1988 and 1989, attaining apogees of 124, 129 and 176km. The lower apogee rockets were flown into the unstable auroral electrojet and encountered intense two-stream waves driven by d.c. electric fields that ranged from 35 to 115 mV/m. The higher apogee rocket returned fields and particle data from an active auroral arc, yet observed a remarkably quiescent electrojet region as the weak d.c. electric fields (~ 10–15 mV/m) there were below the threshold required to excite two-stream waves. The rocket instrumentation included electric field instruments (d.c. and wave), plasma density fluctuation (δn/n) receivers, d.c. fluxgate magnetometers, energetic particle detectors (ions and electrons), ion drift meters, and swept Langmuir probes to determine absolute plasma density and temperature. The wave experiments included spatially separated sensors to provide wave vector and phase velocity information. All three rockets were flown in conjunction with radar backscatter measurements taken by the 50MHz CUPRI system, which was the primary tool used to determine the launch conditions. Two of the rockets were flown in conjunction with plasma drift, density, and temperature measurements taken by the EISCAT incoherent scattar radar. The STARE radar also made measurements during this campaign. This paper describes the scientific objectives of these rocket/radar experiments, provides a summary of the geophysical conditions during each launch, and gives an overview of the principal rocket and radar observations.  相似文献   

15.
Thermospheric wind measurements with the EISCAT UHF radar around the evening Harang discontinuity are presented both in the E- and F-layers. Within the E-layer auroral oval the Lorentz and Coriolis force are shown to be more or less in balance. The neutral velocity is a factor of the order of two smaller than the ion velocity and is on average advanced 90° in a clockwise direction compared to the ion velocity. In the low electron density region just before the Harang discontinuity and outside the auroral oval a large (~250 m s−1), thermally dominated neutral wind is closely followed by the ion wind in the antisolar direction. There is also a large downward flow present just before the Harang discontinuity. In the F-layer the neutral wind approximately follows the ion convection pattern, except for a couple of hours after the sudden change in the ion convection just after the passage of the evening Harang discontinuity. The close resemblance between the equilibrium ion and neutral flow when the neutral-ion collision frequency is close to twice the Earth's angular velocity may be connected to back pressures created by Joule heating in the case of an appreciable ion-neutral velocity difference.  相似文献   

16.
A three-dimensional simulation of the high-latitude ionosphere was applied to investigate the geographical distribution of E-region thin ionization layers which may be formed by the action of the convection electric field. The simulation model computes the ion densities (O+, O+2, N+, N+2, NO+, Fe+), and temperatures as a function of altitude, latitude, and longitude. The stationary state momentum and continuity equations are solved for each ion species, then the energy equation is solved for electrons, neutrals, and a generic ion having the mean ion mass and velocity. The various electric field patterns of the Heppner and Maynard [(1987) J. geophys. Res.92, 4467–4489] convection electric field model were applied and the ionization density pattern was examined after a time sufficient for the formation of thin layers (≈2000 s). It was found that large areas of thin ionization layers were formed for each of the electric field patterns examined. Southward IMF Bz conditions resulted in thin layers forming in the pre-midnight sector in the latitude range north of about 70° to about 80°, and after midnight between 60 and 70°. For northward Bz conditions, the layers were mainly in the pre-midnight sector and covered a latitude range from about 60 to 80°.  相似文献   

17.
Most methods using HF ground backscatter radar data to estimate the ionospheric bottomside electron density profile rely upon multi-frequency measurements of the minimum group delay. However, information of the same nature can also be extracted at a single frequency if the elevation angle can be precisely controlled. We outline the analysis of this technique, known as elevation-scan backscatter sounding. The relevant parameter estimation problem is studied using a Bayesian approach. We report on an experiment using the Losquet Island radar to illustrate this method. The performance is compared to ionosonde data. This technique provides a method of teledetection of the bottomside F-region electron density profile hundreds of km from the radar site: however, further development is needed to provide increased reliability of the estimates.  相似文献   

18.
Observations made at EISCAT suggest that the plasma velocity measured in the F-region above Tromsø can vary substantially on a timescale of a minute or so. The high-resolution measurements made using alternating codes during the ERRRIS experiment have confirmed this result by showing that the rapid variations of plasma velocity measured directly correspond exactly to the variations of ion temperature in the rmupper-E and lower-F region caused by frictional heating, and the variations of electron temperature in the E-region, caused by wave turbulence heating.  相似文献   

19.
The spectra of high frequency waves backscattered at night by small scale (10–20 m) sub-auroral F-region irregularities often exhibit large Doppler shifts and widths in the local time sector 2000–2400. After local midnight the Doppler shifts and the widths of the spectra decrease rapidly. We present examples of experimental data, obtained with the two coherent backscatter radars of the EDIA1 experiment, showing the spectral characteristics just mentioned. From the Doppler shift measured at the two sites we deduced the perpendicular velocity of the irregularities, which can reach values as high as 2000 ms −1. These observations are interpreted using results of theoretical models which predict strong sub-auroral ion flow in the trough region.  相似文献   

20.
Measurements of zonal irregularity drifts were made by the spaced receiver scintillation and radar interferometer techniques from Huancayo and Jicamarca, respectively. The Fabry-Perot Interferometer operated at Arequipa provided the zonal neutral winds. These simultaneous measurements were performed during evening hours in the presence of equatorial spread-F on three nights in October 1988. The zonal drift of 3-m irregularities obtained with the 50-MHz radar showed considerable variation as a function of altitude. The drift of hundreds of m-scale irregularities obtained by the scintillation technique agreed with the drift of 3-m irregularities when the latter were measured near the F-peak. The neutral winds, on the other hand, sometimes exceeded the irregularity drifts by a factor of two. This is a possible result of the partial reduction of the vertical polarization electric field in the F-region caused by the effects of integrated Pedersen conductivity of the off-equatorial night-time E-region coupled to the F-region at high altitudes above the magnetic equator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号