首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three dimensional ionospheric currents and field aligned currents generated by asymmetrical ionospheric dynamo are calculated self-consistently, using the assumption of infinite parallel conductivity. Tidal winds of (1, −2) mode, which are generally accepted as a main cause of Sq fields, are adopted as a wind model. Variation in universal time (UT) is examined by considering the discordance between conductivity and wind distribution, which are assumed to follow the geographic coordinate system, and geomagnetic dipole field. Observed UT variation of Sq current system is partly reproduced by our calculation. Calculation for solstice condition is performed by shifting conductivity distribution by 23.5° in latitude. Height integrated westward currents are much smaller in the winter hemisphere than in the summer hemisphere, though eastward currents are not so different in both hemispheres. This unbalance is compensated by the field aligned currents mainly from summer to winter hemisphere in the morning and vice versa in the afternoon. In both above asymmetric cases, structure of the equatorial electrojet is almost symmetric with respect to the equator. Total field aligned currents are rather large and comparable to currents in the ionosphere.  相似文献   

2.
The solar cycle, seasonal and daily variations of the geomagnetic H field at an equatorial station, Kodaikanal, and at a tropical latitude station, Alibag, are compared with corresponding variations of the E-region ionization densities. The solar cycle variation of the daily range of H at either of the stations is shown to be primarily contributed to by the corresponding variation of the electron density in the E-region of the ionosphere. The seasonal variation of the ΔH at equatorial stations, with maxima during equinoxes, is attributed primarily to the corresponding variation of the index of horizontal electric field in the E-region. The solar daily variation of ΔH at the equatorial station is attributed to the combined effects of the electron density with the maximum very close to noon and the index of electric field with the maximum around 1030 LT, the resulting current being maximum at about 1110 LT. These results are consistent with the ionosphere E-region electron horizontal velocity measurements at the equatorial electrojet station, Thumba in India.  相似文献   

3.
We have examined the time variation of the instantaneous equivalent Sq current system during 1–18 March 1980, by removing the averaged UT variation caused by the difference between geographic and geomagnetic coordinate systems. The additional current system thus obtained shows several typical patterns which explain the variation field. Some of them may be explained by the IMF polarity effect or by the geomagnetic disturbance field of polar origin, but others appear to be caused by the variation of the ionospheric dynamo. The latter lasts for several hours or sometimes for over ten hours and may be explained by the variation of diurnal or semi-diurnal tidal winds.  相似文献   

4.
Three-dimensional ionospheric currents and fields generated by atmospheric global circuit currents, using the distribution of air-Earth currents as a lower boundary conditions of the ionosphere, have been studied. The air-Earth currents are obtained taking geomagnetic and orographic effects into account, under the assumption of an ionosphere with infinite conductivity. Three dimensional ionospheric currents due to thunderstorm sources are calculated, considering the conductivity distribution in the ionosphere and the configuration of the magnetic field. The calculated potential difference in the ionosphere is 55 V and according to our model the horizontal electric field is too weak to affect the ionosphere and magnetosphere significantly. Horizontal currents are not distributed uniformly, but preferably in the day-side hemisphere and especially in the equatorial region, and vertical currents and fields do not simply decrease with altitude near the equator because of anisotropy and nonuniformity in the conductivity.  相似文献   

5.
Ionospheric electric field values are presented, obtained simultaneously by the double probe technique on board a rocket and by two incoherent backscatter radar installations. The measurements were performed during auroral activity over northern Scandinavia. The spatial distribution of the field reveals pronounced local variations.  相似文献   

6.
Coordinated ion-neutral composition and electron density measurements have been carried out over Thumba (India) and Volgograd (U.S.S.R.), near sunrise. One of the launchings from Thumba revealed the turbopause to be around 110 km. Large fluctuations in ion and electron densities were also registered in the altitude region 105–125 km, along with oscillatory structures in the neutral composition, indicating that unusual conditions prevailed during this measurement. Contrary to expectations, ‘time synchronous’ launchings from Thumba and Volgograd revealed nearly identical distributions of neutral species. The turbopause altitudes during these flights were also the same within the limits of experimental uncertainty. These measurements confirm that the role of the turbopause and temperature are mutually independent in governing the distribution of neutral composition in the thermosphere.  相似文献   

7.
Equilibrium configurations of the non-neutral field-aligned electron current sheet in a Maxwellian plasma are obtained from solutions of the time-independent Vlasov-Maxwell equations. This is the first field-aligned non-neutral current sheet model in a hot plasma in which the electrons are allowed to be nonadiabatic. The current in this model has a perpendicular (i.e. diamagnetic) as well as a parallel component to the external magnetic field. The electric field of the current sheet is pointing normally toward the midplane of the sheet. This zeroth-order perpendicular electric field is identified as the primary electric field which gives rise to a few keV potential drop along auroral field lines.  相似文献   

8.
The problem of electromagnetic field disturbances produced by the interaction between winds of acoustic gravity waves (AGW) origin and the ionospheric plasma has been considered. It is shown that, when not allowing the electrostatic approach, electromagnetic field disturbances represent shear Alfvén and compressional modes modified by ionospheric Pedersen and Hall conductivities. It is further shown that the quasielectrostatic Alfvén type disturbances give the main contribution to electric field perturbations. Magnetic field perturbations due to Alfvén and compressional modes have the same order of magnitude. Two numerical models for simulation of the problem under consideration have been developed. The first model is intended for the simulation of Alfvén type disturbance production and transmission into the magnetosphere, taking into account the dipole geometry of the geomagnetic field, but a mutual transformation of Alfvén and compressional modes is ignored. The second model is constructed for the simulation of both electromagnetic field disturbance production and their mutual transformation in the ionosphere. The results of numerical simulations with these models show that there is an opportunity for AGW activity monitoring in the lower thermosphere by ground-and satellite-based recordings of magnetic and electric field variations.  相似文献   

9.
The variations of the diurnal range of the geomagnetic field with sunspot number and with magnetic activity was studied at mid and high latitude stations in the northern hemisphere at different seasons. The effect of increasing sunspot number is small at lower latitudes and increases with geomagnetic latitude, while the effect of increasing magnetic activity is to increase the range at all latitudes, very greatly at the higher geomagnetic latitudes.  相似文献   

10.
Intervals of F-region electron density depletions associated with the main (mid-latitude) ionospheric trough have been studied using latitude scanning experiments with the EISCAT UHF radar. From 450 h of measurements over a one year period at solar minimum (April 1986–April 1987) the local time of appearance of the trough at a given latitude is observed to vary by up to about 8 h. No seasonal dependence of location is apparent, but troughs are absent in the data from summertime experiments. A weak dependence of trough location on Kp is found, and an empirical model predicting the latitude of the trough is proposed. The model is shown to be more appropriate than other available quantitative models for the latitudes covered by EISCAT. Detailed studies of four individual days show no relationship between local magnetic activity and time of observation of the trough. On all four of these days, however, the edge of the auroral oval, evidenced by enhanced electron densities in the E-region, is found to be approximately co-located with, or up to 1° poleward of, the F-region density minimum. Simultaneous ion drift velocity measurements show that the main trough is a region of strong (> several hundred metres per second) westward flow, with its boundary located approximately 1°–2° equatorward of the density minimum. Within the accuracy of the observations this relationship between the convection boundary, the trough minimum and the precipitation boundary is independent of local time and latitude. The relevance of these results is discussed in relation to theoretical models of the F-reregion at high latitudes.  相似文献   

11.
Systematic changes of the position of the dipole axis of the Earth's magnetic field with respect to the solar axis induce distinct daily and seasonal variations of the vertical Bz-component in the solarmagnetospheric coordinate system (BZSM). Depending on the direction of the interplanetary magnetic field (IMF), negative BZSM- values are produced in spring by T polarity and in autumn by A polarity, whereas in the diurnal variation lowest BZSM-values have been calculated to occur near 23 UT for T, and near 11 UT for A polarity, respectively. In different ionospheric and geomagnetic parameters measured at high and midlatitudes increased precipitation of high energetic particles into the lower thermosphere and upper mesosphere has been detected during periods with negative BZSM-components. The seasonal variation of the parameters investigated, with maximum values near the equinoxes, as well as a part of their diurnal variations, can thus be explained by particle precipitation being markedly controlled by the IMF sector structure.  相似文献   

12.
Using a two-dimensional model a study is made of the dynamics of plasma irregularities, embedded in a weakly covered plasma, containing an electric field transverse to the magnetic field. The analysis shows that due to field aligned and Hall plasma drift, the irregularities are divided into two parts, one of which is stretched along the magnetic field.  相似文献   

13.
This review examines models existing in the literature which describe the magnetic field produced by the ring current (DR) at the Earth's surface based on the energy balance equation. The parameters of this equation, the injection function F and decay parameter τ are considered to depend on parameters of the interplanetary medium and the DR intensity. The existing models are shown to be able to describe the DR variations with sufficient accuracy (r.m.s. deviation δ between the experimental and modelled values of DR for 170 magnetic storms is 5 < δ < 15 nT and the correlation coefficient between the two is 0.85 <r<1). The models describe that part of the geomagnetic field variation at low latitudes during a magnetic storm that is controlled by the geoeffective characteristics of the interplanetary medium and which thus responds immediately to its variations (the driven part).The values of τ are significantly less during the main phase of a magnetic storm than during the recovery phase. This reflects the difference in the main mechanisms of ion loss from the ring current during the two phases of the storm. These are the interaction of ions with hydromagnetic waves during the main phase of the storm with its intervals of intense plasma injection into the inner magnetosphere and charge exchange with the cold hydrogen geocorona during the recovery phase.  相似文献   

14.
For a year of quiet solar-activity level, geomagnetic records from American hemisphere observatories located between about 0° and 30° north geomagnetic latitude were used to compare the annual and semiannual variations of the geomagnetic field associated with three separate contributions: (a) the quiet-day midnight level, MDT; (b) the solar-quiet daily variation, Sq; (c) the quiet-time lunar semidiurnal tidal variation, L(12). Four Fourier spectral constituents (24, 12, 8, 6 h periods) of Sq were individually treated. All three orthogonal elements (H, D and Z) were included in the study.The MDT changes show a dominant semiannual variation having a range of about 7 gammas in H and a dominant annual variation in Z having a range of over 8 gammas. These changes seem to be a seasonal response to the nightside distortions by magnetospheric currents. There is a slow decrease in MDT amplitudes with increasing latitude.The Sq changes follow the patterns expected from an equatorial ionospheric dynamo electrojet current system. The dominant seasonal variations occur in H having a range of over 21 gammas for the 24 h period and over 12 gammas for the 12 h period spectral components. The higher-order components are relatively smaller in size. The Sq(H) amplitudes decrease rapidly with increasing latitude. Magnetospheric contributions to the equatorial Sq must be less than a few per cent of the observed magnitude.The L(12) variation shows the ionospheric electrojet features by the dominance of H and the rapid decrease in amplitude with latitude away from the equator. However, the seasonal variation range of over 7 gammas has a maximum in early February and minimum in late June that is not presently explainable by the known ionospheric conductivity and tidal behavior.  相似文献   

15.
The effect of asymmetrical thermospheric winds on NmF2 at the dip I = 30° and its magnetic conjugate point have been computed for equinox conditions to study asymmetry in the ionospheric equatorial anomaly in the African and West Asian regions. The wind models of I11 et al. and Chan and Walker have been used in our computations. During the daytime, due to the winds NmF2 in the northern crest becomes greater than NmF2 in the southern crest; at night the reverse is true in both regions. It is shown that the observed asymmetry in NmF2 at the equatorial crest in the African sector can be well explained by considering the effects of asymmetrical winds with respect to those in the West Asian sector.  相似文献   

16.
Mean hourly values of magnetic declination D, horizontal intensity H and vertical intensity Z observed at Italian stations have been analyzed to determine solar and luni-solar diurnal components, together with the corresponding terms O1 and N2 of the lunar tidal potential.The results, showing the variations of the first four harmonic components with season, degree of magnetic activity and annual sunspot number, are tabulated and discussed. Differences between the dependence of S and L on season and sunspot number are considered and tentative explanations offered. The oceanic tidal effect has been determined and it is apparent that this is more likely to show the influence of the Atlantic Ocean rather than the Mediterranean Sea.  相似文献   

17.
The main object of the campaign reported here was to compare TID characteristics obtained from two essentially different observation techniques: (1) observation of the apparent angular position shifts of Virgo A by the Nançay radioheliograph (47.33°N, 2.15°E) gave azimuths and periods of travelling ionospheric disturbances (TIDs); (2) differential Doppler shifts of signals from NNSS-satellites recorded simultaneously at Tours (47.35°N, 0.70°E), Nançay and Besançon (47.32°N, 5.99°E) provided azimuths and latitudinal wavelengths. Observations were made during the period 10–30 November 1987, between 6 and 12 h UT. It is found that azimuths obtained from the two techniques are consistent if sufficient averaging over wave trains is performed: averaging over several hours for radio interferometry and averaging over the whole satellite trace for the differential Doppler technique. Averaging is necessary because of (1) the intrinsic dispersion in wave azimuth, (2) the broadness of observed wave spectra and the dispersive properties of gravity waves, and (3) the spatial separation of ionospheric points for the two techniques. Good agreement between the azimuths was achieved by setting the altitude of the TIDs, which is used in the differential Doppler analysis, to about 250 km, appreciably lower than the maximum in electron density (about 350 km). The mean azimuth of observed TIDs was 12° East from South with a standard deviation of about 30°. The dominant period and horizontal wavelength of the observed TIDs were 40 min and 450 km. The East-West coherence length of the TIDs was found to be only of the order of 200 km.  相似文献   

18.
In this study I review two conflicting scenaria of the history of northwestern Arabia from approximately 1300 to 200 BC and discuss their theoretical and methodological determinants. The still sparse archaeological and historic information on this topic has been used in two quite different ways. On one hand there is the traditional culture historical approach which subordines all social interpretation to the precise strictures of an interrupted ceramic typology, on the other a recent attempt to interpret archaeological and textual data within the theoretical framework of a long-term historical model that integrates the Hejaz into the broader Near Eastern world system. I argue that these two approaches reflect fundamentally different approaches to the study of ancient society and that each incorporates a conceptual approach that necessarily determines its interpretational outcome. Furthermore I conclude that use of an inclusive theoretical model permits better integration of the growing archaeological and textual information bases and obviates much of the inconsistency and interpretational naivity that unavoidably derives from the culture historica approach.  相似文献   

19.
The annual variation of the daytime F2-layer peak electron density (NmF2) is studied at two low latitude stations, Okinawa and Tahiti (geomagnetic latitudes ± 15°) for the sunspot maximum years 1979–1981. Observed values are compared with those calculated using the MSIS model and a simplified version of the continuity equation for day-time equilibrium conditions. Summer-winter differences imply an intensification of the fountain effect on the winter side of the equator at the expense of the summer side. This could be explained by a summer to winter neutral wind. Semi-annual variations, however, appear to be mainly due to changes in neutral composition.  相似文献   

20.
This paper summarizes the results of measurements of the electrical conductivity σ and vertical component of the vector electric field Ez acquired from eight stratospheric balloon flights launched from Amundsen-Scott Station, South Pole, in the austral summer of 1985–1986. The major findings of this research are as follows
  • 1.(1) The data contribute to the set of global atmospheric electricity measurements and extend the work of COBB [(1977), Atmospheric electric measurements at the South Pole. In Electrical Processes in Atmospheres, Dolezalek H. and Reiter R. (eds), pp. 161–167. Steinkopf, Darmstadt, F.R.G.] to determine the electrical environment of the south polar region
  • 2.(2) The average vertical profile of the conductivity at the South Pole, when compared with profiles obtained at other Antarctic locations, suggests that the conductivity scale height may increase with increasing geomagnetic latitude across the polar cap.
  • 3.(3) The conductivity profiles measured at the South Pole and other Antarctic locations differ significantly from polar cap model profiles. On the basis of these measurements, the model profiles appear to require modification
  • 4.(4) The magnitudes of the Ez profiles were observed to vary from day-to-day by a factor of > 2
  • 5.(5) In all of the flights the air-Earth conduction current Jz, calculated as the product of Ez and σ, decreased with altitude in agreement with previous direct measurements of the air-Earth current by Cobb [( 1977), Atmospheric electric measurements at the South Pole. In Electrical Processes in Atmospheres, Dolezalek H. and Reiter R. (eds), pp. 161–167. Steinkopf, Darmstadt, F.R.G.]
  • 6.(6) The magnitude of Jz was 2–3 times larger than the global average, which can be attributed to the lower columnar resistance of the atmosphere above the high-elevation Antarctic plateau. The magnitude of Jz agrees with that observed by Cobb, if the Cobb measurements are multiplied by the Few and Weinheimer [(1986), Factor of 2 error in balloon-borne atmospheric conduction current measurements. J. geophys. Res.91, 10937] correction factor of 2
  • 7.(7) Ez from all of the flights during times of balloon float demonstrates characteristics of the classical ‘Carnegie’ diurnal variation, which is indicative of global influences on the ionospheric potential
  • 8.(8) The influence of geomagnetic activity was observed as a decrease in the amplitude of the diurnal variation of Ez with increasing geomagnetic activity index Kp, which is the predicted effect at the South Pole of the magnetospheric polar-cap potential superimposed on the ‘Carnegie’ potential variation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号