首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plasma densities obtained from EISCAT's UHF incoherent scatter system are compared with profiles inverted from the digital ionograms of a co-located dynasonde. Excellent agreement is found for the bottomside ionosphere when conditions of horizontal stratification and classical photochemical equilibrium prevail. However, departures from such conditions are frequent and intense at Tromsø. Compensating errors of EISCAT calibration and long pulse convolution are resolved by analysis of power profile data. Good agreement is recovered for tilted and more complex ionospheric structure, provided that accurate echo location data are used to confirm a common volume. Monotonic inversion of the ionograms is inadequate. Dynasonde recordings are analysed to show characteristic structure in vertical and horizontal planes as a context for EISCAT measurements along a fixed (magnetic field) direction. Incoherent scatter and modern total reflection sounding, used together and coordinated in one consistent data reduction system, could produce a far more powerful ionospheric diagnostic program than either technique seems capable of providing alone.  相似文献   

2.
Two radars were used simultaneously to study naturally occurring electron heating events in the auroral E-region ionosphere. During a joint campaign in March 1986 the Cornell University Portable Radar Interferometer (CUPRI) was positioned to look perpendicular to the magnetic field to observe unstable plasma waves over Tromsø, Norway, while EISCAT measured the ambient conditions in the unstable region. On two nights EISCAT detected intense but short lived (< 1 min) electron heating events during which the temperature suddenly increased by a factor of 2–4 at altitudes near 108 km and the electron densities were less than 7 × 104 cm−3. On the second of these nights CUPRI was operating and detected strong plasma waves with very large phase velocities at precisely the altitudes and times at which the heating was observed. The altitudes, as well as one component of the irregularity drift velocity, were determined by interferometric techniques. From the observations and our analysis, we conclude that the electron temperature increases were caused by plasma wave heating and not by either Joule heating or particle precipitation.  相似文献   

3.
During relative drifts between the ions and the neutrals perpendicular to the geomagnetic field, the ion temperature in the auroral F-region becomes anisotropic with a higher temperature perpendicular than parallel to the magnetic field (T >T). It has been shown that for a gyrotropic ion velocity distribution the ion temperatures T and T can be expressed as a function of the neutral temperature and of the squared normalized relative ion-neutral drift, with parameters β and β describing the anisotropy and the collision process.In this paper, five increases of the F-layer ion temperature and ion drift velocity, found in EISCAT-CP1F data, were analyzed to obtain information about the anisotropy and the collision process. In the CP1F experiment, the angles between the magnetic field line ending in Tromsø and the antenna directions remain small, and the ion drift velocities of the investigated events in general were below 1500 m/s. Thus the ion velocity distributions were approximated by a bi-Maxwellian, and NO+ was assumed to remain a minor constituent at the F-layer maximum. For a quantitative analysis, generalized theoretical β-values for a bi-Maxwellian ion velocity distribution drifting through a mixture of different neutral components and for arbitrary observation directions were calculated. With these expressions it was possible to compare the drift dependence of the measured ion temperature for every antenna position directly with the theory. A statistical analysis of the heating events showed a good correlation between the ion temperatures of Tromsø, Kiruna and Sodankylä and the squared normalized ion drift, and values βT, βK, βS could be calculated by linear regression. The fitted curves corresponded well with theoretical curves for a bi-Maxwellian velocity distribution of O+ ions drifting through a neutral atmosphere consisting of O and N2.  相似文献   

4.
The accuracy of electron densities in routinely analysed EISCAT data is discussed and comparisons are made between the EISCAT measurements and those determined by rockets and an ionosonde.  相似文献   

5.
Observations of large time variations in the ionospheric F-region temperature derived from EISCAT are compared with simultaneous observations of the E- and F-region plasma densities. The observations suggest that the F-region may be heated by current driven instabilities generated during intense precipitation of auroral electrons.  相似文献   

6.
Sudden bursts of plasma velocity, including an equatorward component, are often observed by EISCAT in the evening and midnight sectors. Typically, these bursts last for about 3–7 min, and are repeated in a quasi-periodic sequence. Quasi-periodic equatorward bursts are also observed by the SABRE coherent scatter radar and these measurements confirm that the pattern can extend over several degrees of latitude and at least 10° of longitude.  相似文献   

7.
Measurements of ion temperature, ion-neutral collision frequency and ion drift in the E-region from the period December 1984 to November 1985 are used to derive neutral temperatures, densities and meridional winds in the altitude intervals 92–120 km, 92–105 km and 92–120 km, respectively. Altitude profiles of temperature and density and their seasonal variations are compared with the CIRA 1972 and MSIS 1983 models and the effects of geomagnetic activity are demonstrated. Semi-diurnal tidal variations in all three parameters are derived and the comparison with lower latitude measurements is discussed.  相似文献   

8.
EISCAT measurements were performed during the four ROSE rocket launches. The results are presented. It is shown that the upper altitude limit of instabilities observed by in-situ measurements agrees with calculations using EISCAT results of drift and ion sound speed and assuming the two-stream-instability mechanism. The EISCAT results together with the STARE observations were used to calculate the ion velocity and the ψ-values from the dispersion relation of two-stream-instabilities. A comparison of EISCAT, STARE and in-situ measurements is discussed.  相似文献   

9.
By comparing direct measurements taken from onboard Atmosphere Explorer spacecraft (AE), in eccentric orbit, with incoherent scatter radar (ISR) measurements taken from the ground, we illustrate both the merits and the difficulties involved in such comparisons. Five altitude profiles of ionization determined from AE, in near coincidence with ground stations making ISR measurements, compared favorably with the ISR data so long as the AE measurements were properly analyzed for the effects of variations in latitude and solar zenith angle along the spacecraft orbit.  相似文献   

10.
Flux variations of high energy (E > 16 keV) electrons, measured by the energetic particle spectrometer onboard the geosynchronous satellite GEOS 2, have been compared to simultaneously observed electron density structures in the lower ionosphere, measured with the incoherent scatter facility EISCAT. The very localized E-region electron density enhancements caused by the precipitation allow a preliminary estimate of the location of the footpoint of the magnetic field line through GEOS 2. Various other results of the intercomparison are discussed.  相似文献   

11.
The effect of a prolonged period of strongly northward Interplanetary Magnetic Field (IMF) on the high-latitude F-region is studied using data from the EISCAT Common Programme Zero mode of operation on 11–12 August 1982. The analysis of the raw autocorrelation functions is kept to the directly derived parameters Ne, Te, Ti and velocity, and limits are defined for the errors introduced by assumptions about ion composition and by changes in the transmitted power and system constant. Simple data-cleaning criteria are employed to eliminate problems due to coherent signals and large background noise levels. The observed variations in plasma densities, temperatures and velocities are interpreted in terms of supporting data from ISEE-3 and local riometers and magnetometers. Both field-aligned and field-perpendicular plasma flows at Tromsø showed effects of the northward IMF: convection was slow and irregular and field-aligned flow profiles were characteristic of steady-state polar wind outflow with flux of order 1012 m−2 s−1. This period followed a strongly southward IMF which had triggered a substorm. The substorm gave enhanced convection, with a swing to equatorward flow and large (5 × 1012 m−2 s−1), steady-state field-aligned fluxes, leading to the possibility of O+ escape into the magnetosphere. The apparent influence of the IMF over both field-perpendicular and field-aligned flows is explained in terms of the cross-cap potential difference and the location of the auroral oval.  相似文献   

12.
Electron density profiles, 70–110 km, for almost identical solar zenith angles over Central Europe and over Ahmedabad (India) are compared, avoiding seasonal ‘anomalies’. Low- and mid-latitude profiles agree very well in their structural features, the maximum deviation in magnitude being by a factor of 2 (around 90 km).  相似文献   

13.
This paper reviews current knowledge on links between the Earth's magnetic tail and the auroral oval, and identifies some problems remaining. It considers electrons as tracers of the geomagnetic field, boundaries between different regions, plasma flows, and pressure balance conditions. The auroral arc is considered as a standing discontinuity in the flow of central plasma sheet (CPS) plasma field-aligned current systems are also proposed. The plasma instability responsible for the breakup phase of an auroral substorm is also discussed.  相似文献   

14.
The EISCAT Common Programme can be used in three ways to monitor tidal oscillations in the lower thermosphere. In Common Programme One (CPI) tristatic observations provide measurements of the ion-velocity vector at several heights in the E-region and one height in the F-region. In Common Programme Two (CP2) monostatic measurements give profiles of ion velocity in the E-region while tristatic measurements give continuous measurements of ion velocity in the F-region. From the ion velocities and the ion-neutral collision frequency, the vector of the E-region neutral wind can be determined and both east-west and north-south components of the diurnal, semi-diurnal and ter-diurnal oscillations can be identified. CP1 and CP2 also provide profiles of the field-aligned ion velocity, and these can be used to calculate the north-south component of the neutral wind without knowing the ion-neutral collision frequency, but the result is affected by any vertical component of neutral velocity. The three methods are compared and the advantages of CP2 demonstrated.  相似文献   

15.
Measurement of the observed anti-correlation between the field-perpendicular component of F-region plasma velocity in the north-south plane and the downward, field-parallel component has been proposed as a way to determine the value of the O-O+ collision frequency. However, random noise errors in measurements of plasma velocity made at EISCAT may combine in analysis to induce a spurious anti-correlation between the derived values of these components which is hard to distinguish from any genuine anti-correlation.  相似文献   

16.
Results of a sodium vapour release experiment carried out from SHAR (India), an equatorial rocket launching station, immediately after (⩽ 2 h) a storm sudden commencement (SSC) during the initial phase of a magnetic storm, followed by electron density measurements are presented. Many of the relevant atmospheric parameters, namely, neutral winds and their altitude variation, the magnitude of the shears in them, the neutral temperature with altitude by spectroscopic methods, diffusion measurements on the released trail, clues on the turbopause level and the electron densities including the structures (irregularities) in them were obtained. The results of the temperature measurements carried out independently on the sodium trail by means of a ground-based Fabry-Perot spectrometer, operating on the sodium D 1 line, resonantly scattered by the trail have already been reported by us (Ranjan Guptaet al., 1986). In this paper the effects of the excess temperature reported earlier and the rest of the measured parameters on the electron density profiles are evaluated using models and compared with the measurements.The formation of sharp layers of ionization have been explained on the basis of the electro-dynamical processes associated with the wind shears at a location, close to the edge of the equatorial electrojet belt. The significance of the changes in the neutral composition due to the enhanced neutral temperature and the low turbopause level, in increasing the base-level plasma densities by a factor of 3–5 are demonstrated and the possible role of plasma dynamics discussed.  相似文献   

17.
Measurements of precipitating particles on board DMSP F7 spacecraft are used to analyze the distribution of ionospheric conductance in the midnight auroral zone during substorms. The distribution is compared with the meridional profile of ionospheric currents calculated from magnetic data from the Kara meridional chain. Two regions of high Hall conductance are found; one of them is the traditional auroral zone, at latitudes 64–68°, and the other is a narrow band at latitudes 70–73°. The position of high conductance zones is in agreement with the location of the intense westward currents. The accelerated particle population is typical of electrons Ee > 5 keV in the high conductance region.  相似文献   

18.
A comparative study of ionospheric measurements obtained by different sensors on two satellites has shown excellent agreement between the principal techniques used to measure the plasma density and ion composition. Results from an ion mass spectrometer on the S3-1 satellite and from an impedance probe and a retarding potential analyzer on the AEROS-B satellite have been compared for five cases that represent the closest coincidence of measurements that occurred during the satellite lifetimes. The crossings occurred at high polar latitudes and the studies have indicated that invariant latitude is more important than altitude, geodetic latitude, or geomagnetic latitude in systematizing the data. The ratios of the mass spectrometer ion densities to the impedance probe electron densities resulted in an average value of 1.00 with a standard deviation of 6%. The composition percentage for the molecular and atomic ions from the retarding potential analyzer agreed generally within about 20% of the mass spectrometer measurements.  相似文献   

19.
During two 24 h periods of EISCAT observations in the summer of 1982, the F-region ion temperature and density responded differently before and after midnight to large ion convective flows. Such observations were recently reported at Chatanika (Alaska), however, the mechanism invoked to interpret these measurements (large day-to-night variation in electron density affecting the coupling between ions and neutrals) appears insufficient, for summer conditions, to account for the EISCAT observations. Hence, it is proposed, with the support of Fabry-Perot observations and numerical models, that in addition to the electron density asymmetry, the presence of a large southward neutral wind around midnight induces, through Coriolis coupling, a zonal neutral wind of an opposite direction to the convective flow. This enhances considerably the frictional energy and momentum transfer between ions and neutrals in the post-midnight sector.  相似文献   

20.
EISCAT measurements of the electric field in the auroral electrojet are compared with the signature of TIDs propagating equatorward as observed by an HF-Doppler network. At night-time the onset of auroral activity is usually followed by the arrival of a TID at lower latitude. Cross-correlation of the time variations of the electric field measured by EISCAT and the frequency offset recorded by the HF-Doppler system confirms a relationship between the auroral activity and the gravity wave, indicating both the travel time and the periodicity of the wave. The relationship is especially close under quiet conditions when the cross-correlation coefficient is typically 60%, significant at 0.1%. When the observed electric field is used as input to a thermosphere-ionosphere coupled global model it predicts the time signature of the observed HF-Doppler variation reasonably well but seriously underestimates the amplitude of the disturbance. Examination of this discrepancy may lead to a better understanding of the mechanisms involved in the generation and propagation of atmospheric gravity waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号