首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The source of Pc 1 (pearl) pulsations observed in the course of the local morning hours on 7 December 1977 has been determined by the amplitude and group delay methods. The frequency of pulsations exhibit the typical diurnal variation with the maximum frequency during dawn hours. The source location of pearls during every 1-h interval is compared with the position of the plasmapause inferred from the GEOS I measurements and from previous statistical analysis. It is shown that the source of high-frequency pulsations (f > 1 Hz) is well inside the plasmapause whereas low-frequency pulsations (f < 1 Hz) occur near the plasmapause. The source of pulsations is displaced to higher L-values in the course of the local morning hours and this displacement is associated with the decrease of the frequency of pulsations. The source displacement is much more pronounced than the simultaneous movement of the plasmapause position. These observations imply that the model of the Pc1 generation which locates the source only at the plasmapause has serious shortcomings. A model is discussed which takes into account the generation of Pc1 pulsations also well inside the plasmapause and the properties of the waveguide propagation of waves in the ionspheric duct.  相似文献   

3.
Whistler mode signals from VLF transmitters received at Faraday, Antarctica (65° S, 64° W) during 1986–1991 show an annual variation in the number of hours over which signals are observed, with a maximum in June and a minimum in December. The variation was larger at solar minimum than at maximum and can be understood in terms of changes in absorption of VLF signals in the D-region, where the high geographic latitude of Faraday plays an important role in producing low attenuation levels during the austral winter. In contrast, very little such variation was observed at Dunedin, New Zealand (46° S, 171° E) in 1991. Nighttime whistler mode signals have start and end time trends that are consistent with the influence of F-region absorption. Increases in whistler mode occurrence appear to be associated with periods of high geomagnetic activity at solar maximum but not during solar minimum. A possible mechanism involving decreased F-region absorption is discussed.  相似文献   

4.
A ray-tracing model of the inner magnetosphere (L < 6) is constructed for a plasma distribution asymmetric about the equatorial plane, thus representing summer and winter conditions in the two hemispheres. At the reference height of 900 km, the oxygen ion concentration and electron density are taken to vary by factors of ten and two respectively between the hemispheres. The concentrations of hydrogen and helium ions at the reference level are chosen to ensure electron density continuity across the equatorial plane. The altitude at which ducts terminate is modelled to differ between the two hemispheres in accordance with the numerical simulations of Bernhardt and Park (1977).It is shown that the different plasma distributions in the two hemispheres affect the paths of ducted rays and consequently the likelihood of the reception of one-hop whistlers in the conjugate hemisphere. The difference in final latitude between propagation in the symmetric and asymmetric models for the same initial latitude is largest when ducts extend down to 300 km altitude in the conjugate hemisphere. When ducts terminate at greater altitude, the effect of a difference in termination heights between the two hemispheres generally has a larger effect than that of the plasma asymmetry. Both these effects may play a role in determining the seasonal variation of whistler occurrence.  相似文献   

5.
As shown by statistical investigations, high speed plasma streams (HSPS) in the solar wind cause direct ionospheric effects in the D- and Es-layers at auroral and subauroral latitudes due to increasing precipitation of high energetic particles as well as indirect effects in the F2-region at high, middle and equatorial latitudes caused by auroral heating processes. The ionospheric effects increase with the strength of the HSPS and are most pronounced for HSPS during IMF pro sectors (sectors with negative Bz-component). Seasonal differences of the ionospheric response to solar velocity changes are caused by the IMF influence (maximum effect at equinoxes) as well as internal atmospheric reasons (enhanced variability during winter).  相似文献   

6.
The analytic properties of the dispersion function of a whistler are investigated in the complex frequency plane. It possesses a pole and a branch point at a frequency equal to the minimum value of the electron gyrofrequency along the path of propagation. An integral equation relates the dispersion function to the distribution of magnetospheric electrons along the path and the solution of this equation is obtained. It is found that the electron density in the equatorial plane is very simply related to the dispersion function. A discussion of approximate formulae to represent the dispersion shows how particular terms can be related to attributes of the electron density distribution, and a new approximate formula is proposed.  相似文献   

7.
Whistler mode signals from the NAA transmitter (24 kHz) received at Faraday, Antarctica are processed to obtain the Doppler shift at a much higher time resolution than has previously been possible. This has allowed the observation of pulsations of about 13 mHz frequency which are believed to be associated with hydromagnetic waves in the magnetosphere. The pulsations are observed separately on signals with a number of discrete group delay features that can be interpreted as individual whistler ducts. Using the measured pulsation phase over the array of ducts the phase velocity and wave normal direction of the hydromagnetic wave in the equatorial plane are estimated. The direction of propagation is consistent with a source on the dayside magnetopause.The association between whistler mode Doppler shifts and hydromagnetic waves has been reported before but not, as far as we are aware, using an experimental technique that allows measurements on individual ducts in order to determine the direction of propagation of the hydromagnetic wave.  相似文献   

8.
An approximate formula is obtained for ordinary mode refractive index for the case of almost perpendicular propagation in a hot anisotropic plasma with a loss cone. It is pointed out that the influence of electron finite temperature on wave propagation is stronger when the wave frequency is close to the first two harmonics of the electron gyrofrequency. Ordinary mode energy focusing in the direction perpendicular to the magnetic field can occur only in those regions of the magnetosphere, where the electron gyrofrequency is close to the electron plasma frequency. Ordinary mode waves are usually trapped in the vicinity of the magnetospheric equator and so their energy can be concentrated in this region.  相似文献   

9.
An approximate formula is obtained for the extraordinary mode refractive index for the case of almost perpendicular propagation in a hot anisotropic plasma with a loss cone. It is pointed out that the influence of finite electron temperature on perpendicular wave propagation is most significant when the wave frequency is close to the upper hybrid frequency and the second harmonic of the electron gyrofrequency. For oblique propagation this influence is significant when the wave frequency is close to the upper hybrid frequency and the first two harmonics of the electron gyrofrequency.Extraordinary mode energy focusing in the direction perpendicular to the magnetic field is considered for different plasma parameters. In particular, it is stressed that at frequencies close to the first harmonic of the electron gyrofrequency, this focusing occurs even for low temperature plasma, although this result does not originate from cold plasma theory.Extraordinary mode energy trapping in the vicinity of the equatorial plane of the magnetosphere is considered with a simple model plasma distribution function. It is emphasised that this kind of trapping provides a convincing explanation for Auroral Kilometric Radiation (AKR) observations at frequencies close to the second harmonic of the electron gyrofrequency.  相似文献   

10.
The plasmapause and the mid-latitude ionospheric trough have been observed simultaneously from two Antarctic stations, Halley and Faraday, during five winter nights covering a range of geomagnetic disturbance conditions. The equatorial radius of the plasmapause was measured using whistlers recorded at Halley, whilst the poleward edge of the trough was located from ionospheric soundings at one or other of the stations.Before midnight the trough was well poleward of the plasmapause (by 1–2 L) when first observed (typically at ~21 LT), but then moved rapidly equatorwards. After local magnetic midnight the two features were roughly coincident, and in general moved slowly to lower L-shells with increasing local time. At no time were there simultaneous and identical movements of the two features, suggesting a lack of coupling between them. Agreement of the observations with statistical studies and models was fair, given the considerable variability among the five cases studied. For the geomagnetically quieter nights the trough data fit the Spiro model predictions, whereas in the most disturbed case, agreement is better with the Quegan et al. model. The latter model predicts a difference in L between the two features which would fit the data better if shifted 1–2 h later in local time.  相似文献   

11.
When using the approximate expression for different wave refractive indices derived by Sazhin we outlined those values of plasma parameters and wave frequencies for which cold and non-relativistic plasma approximations are valid. For R and O waves the latter approximation is valid when the wave frequency is close to the electron gyrofrequency; for the X wave it is valid when the wave frequency is close to the doubled electron gyrofrequency.  相似文献   

12.
This paper presents the results of a statistical analysis made under the 1 h average regime from the electron density data obtained over one year by the relaxation sounder on board the satellite GEOS-2 of ESA. The electron density diurnal variations, monthly and annually averaged, are sorted out. A comparison between monthly averaged, daily electron density profiles obtained over all the year has revealed the existence of a seasonal variation of plasma density in the equatorial region, the electron density being larger, on average, in summer than in winter. This seasonal variation is superimposed on the variation related to geomagnetic activity. The asymmetry of the Earth's internal magnetic field is mentioned as being a potential candidate for explaining this seasonal modulation. The annually averaged, daily profile is given. It is found to reach a maximum at 1600 LT, which indicates a plasmaspheric bulge in the predusk, rather than dusk, sector. This is found to be significantly earlier than the average LT location of the stagnation point (≳ 1800 LT) inferred from previous empirical studies for comparable geomagnetic activity levels. This latter feature is interpreted as resulting from the asymmetry of the individual daily density profiles with respect to their maximum, which has been previously reported, and whose effect, after averaging individual daily profiles having their maxima distributed around dusk, is to shift the maximum of the average profile toward the predusk sector.  相似文献   

13.
By the full-wave algorithm with Fourier synthesis, 3-D propagation of a whistler beam incident on the pre-dawn lower ionosphere at very low latitude is numerically investigated. Processes of transmission, reflection, and coupling with the Earth-ionosphere waveguide are discussed via the wave energy and polarisation distributions and their dependence on the wave parameters and the ionospheric profile (such as the Es-layer). It is shown that the dominant wave above 90 km altitude has the propagation characteristics of the magneto-ionic whistler mode, and absorption, spreading, reflection and mode conversion mainly occur at, and are greatly affected by, the bottom of the ionosphere. It is found that the transmitted energy density along the Earth's surface is reduced by 20 dB or more. Beam transmission loss varies asymmetrically with the incident angle, but changes little with the frequency. In the region 150 km (for 5 kHz) away from the ‘exit area’ where whistlers emerge, the bearing measurements using ground-based VLF direction-finders may be in error because direction-finding algorithms assume plane wave propagation. Only a small portion (about −25 dB at 5 kHz) of the incident energy is reflected up to an altitude of 150 km, and major reflection takes place in a small range of altitude at the bottom of the ionosphere with little spreading and lateral shift with respect to the incident beam. Reflection is enhanced considerably at lower frequency. Our results also suggest that an Es-layer or an ionospheric gradient refracting waves to higher latitudes would be favorable factors for multi-hop echoes to be received on the ground.  相似文献   

14.
Whistler-mode signals observed at Faraday, Antarctica (65° S, 64° W, Λ=50.8°) show anomalous changes in group delay and Doppler shift with time during the main phase of intense geomagnetic activity. These changes are interpreted as the effect of refracting signals into and out of ducts near L=2.5 by electron concentration gradients associated with edges of the mid-latitude ionospheric trough. The refraction region is observed to propagate equatorwards at velocities in the range 20–85 ms−1 during periods of high geomagnetic activity (Kp ≥ 5), which is in good agreement with typical trough velocities. Model estimates of the time that the trough edges come into view from Faraday show a good correlation with the observed start times of the anomalous features. Whistler-mode signals observed at Dunedin, New Zealand (46° S, 171° E, Λ=52.5°) that have propagated at an average L-shell of 2.2 (Λ=47.6°) do not show such trough-related changes in group delay. These observations are consistent with a lower occurrence of the trough at lower invariant latitudes.  相似文献   

15.
A new method is presented for computing the wave normal directions of deterministic VLF signals that can be approximated by plane waves. The a priori information about the frequency-time behaviour of the signal is exploited by a matched filtering and subsequent parameter estimation technique. The method was developed basically to determine wave normal directions of whistlers from wave field components measured on-board. After an outline of the method, results obtained for simulated whistlers are presented that demonstrate the superiority of the new method over the cross-product and Means methods.  相似文献   

16.
Whistler mode group delays observed at Faraday, Antarctica (65° S, 64° W) and Dunedin, New Zealand (46° S, 171° E) show sudden increases of the order of hundreds of milliseconds within 15 minutes. These events (‘discontinuities’) are observed during sunrise or sunset at the duct entry regions, close to the receiver's conjugate point. The sudden increase in group delay can be explained as a tilting of the up-going wave towards the sun by horizontal electron density gradients associated with the passage of the dawn/dusk terminator. The waves become trapped into higher L-shell ducts. The majority of the events are seen during June-August and can be understood in terms of the orientation of the terminator with respect to the field aligned ducts. The position of the source VLF transmitter relative to the duct entry region is found to be important in determining the contribution of ionospheric electron density gradients to the L-shell distribution of the whistler mode signals.  相似文献   

17.
It is well known that several types of geomagnetic pulsations show a significant amplitude enhancement near the dip equator due to the daytime equatorial electrojet. In the present study, the dependence of this enhancement on the period and type of geomagnetic variations is examined. The results show that, in general, the amplitude enhancement appears to be more or less uniform, amounting to a factor of 2.0–2.5, over a wide range of periods. However, for pulsations, there is a fairly sharp cut-off of the equatorial enhancement around a 20 s period, the shorter period end of Pc3 pulsations. Further, shorter period pulsations (<20 s) sometimes suffer an attenuation at the dip equator near noon. These results are discussed in the light of the transmission characteristics of the ionosphere, including the possible relation to the equatorial anomaly in the ionospheric F-region.  相似文献   

18.
The dynamics of a one-dimensional ionospheric irregularity interacting with the magnetosphere is studied by numerical simulation. The polarization electric field produced by charge separation within the irregularity propagates along magnetic field lines with the Alfvén velocity VA and drives polarizational and field-aligned currents in the magnetosphere. Their values and localization are controlled by motion and deformation of the irregularity resulting from its electrostatic coupling to the background ionosphere. The pattern of the field-aligned currents varies with time and depends primarily on gradients of the polarization electric field. The latter is controlled by the ambient electric field, diffusion, recombination process, intensity of the initial perturbation, etc. Feedback effect of the magnetospheric conductance on the development of the irregularity is examined.  相似文献   

19.
Waveforms computed using the new whistler model derived from Maxwell's equations were analysed. In the calculations, realistic model values for magnetospheric parameters were used. The results accurately described whistler-mode propagation in the magnetosphere and provide explanations for some features exhibited by real observed whistlers when they are analysed. In particular, solutions of the exact full-wave whistler model can explain the whistler fine structure, and may be used to develop a more accurate (matched filtering) fine-structure analysis method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号