首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is a brief review of ionospheric irregularities in the equatorial topside ionosphere. Results from topside sounders, direct measurement satellites, and the Jicamarca incoherent scatter radar are discussed. Scintillation observations and theories of irregularities are not discussed in detail as these are the subject of other review papers. Many of the phenomena detected in the topside ionosphere are related to bottomside irregularities, commonly known as spread-F. These include aspect-sensitive scattering observed on topside sounders, significant concentrations of Fe+, electrostatic turbulence and the topside irregularities detected by the Jicamarca radar. Satellite measurements show that the irregularities in electron concentration have amplitudes which increase almost linearly with wave-length over the range 70m to 3km. Duct irregularities detected by the topside sounders and some wavelike irregularity structures detected occasionally by direct measurement satellites may be separate from the general spread-F phenomenon although this has not definitely been established.  相似文献   

2.
3.
The distribution of nighttime irregularities which produce satellite scintillation has been examined for a midlatitude location using a large array of receivers. The irregularities are aligned along the earth's magnetic field and appear to extend from top to bottom of the F-region, being preferentially observed near the F-region ionization peak where they produce the strongest scintillations. A new method of mapping the horizontal distribution shows patches of various shapes and sizes but with no systematic structure.  相似文献   

4.
This paper reports a study of the length of the midlatitude F-region irregularities which cause scintillations. The length of scintillation irregularities is usually measured by the Full Correlation Analysis (FCA) method. If observations from a typical 3-receiver array, with small spacing, are used the length is always found to he only a few kilometers. Basic ionospheric theory indicates that the irregularities should he much longer than this. In this experiment scintillations of beacon transmissions from polar-orbiting satellites were observed on a 3-receiver array with 310 m spacing, and a fourth receiver 4.6 km away was used to check the lengths measured. Analysis of the scintillation observations from the 310 m array used the FCA method. In all cases the FCA lengths, from the small array, were much shorter than those measured by the distant receiver. Measurements using the 4.6 km receiver gave an average ratio of 44.5 and a half-length (in ionosphere) of 9.4 km. It appears that random errors in the correlation functions cause the FCA to underestimate the length of the ground pattern of irregularities when the spacing of the receivers is much less than the pattern size.  相似文献   

5.
The total rate of recombination in the night-time ionosphere above Malvern (at L = 2.6) was estimated using a model atmosphere, and the results were compared with the observed rate of change of total electron content to determine the net influx of plasma. Horizontal transport under the influence of electric fields was an important factor on a time-scale of an hour or less but when averaged throughout the night made little contribution. The main influx of plasma was a downward diffusion from the protonosphere, especially before midnight. The average downward flux increased steadily as the protonosphere filled after a magnetic storm, with a saturation time of at least 8 days.  相似文献   

6.
Nonlinearity of the phase time delay vs frequency of the ionospheric channel results in frequency dispersion. This distorts wideband signals and leads to amplitude reduction and ‘elongation’ of narrow pulses. Its effect on frequency modulated continuous wave signals (FMCW or chirp) is to broaden the width of the compressed pulse and to produce a chirp signal at the output of the detector instead of the ideal sine function. Several workers have studied this distortion and derived expressions which related the width of the compressed pulse to the first order derivative of the group time delay vs frequency. These expressions are limited to the case when the bandwidth of the channel is greater than the bandwidth of the transmitted chirp signal. In this paper a generalized expression for the time-bandwidth product of the chirp signal at the output of the detector is derived. Numerical calculations for the width of the compressed pulse vs its time-bandwidth product for various window functions are presented. The results are then applied to experimental data obtained over a short skywave radio link.  相似文献   

7.
The total rate of recombination in the night-time ionosphere above St. Santin (at L = 1.8) was estimated using a model atmosphere and the results were compared with the observed rate of change of total electron content to determine the net influx of plasma. Horizontal transport under the influence of electric fields was measured but at the latitude of St. Santin this was always small and averaged over the night as a whole the contribution was negligible. Downward diffusion provided the main source of plasma and the flux predicted was compared with the flux measured at 450 km. The comparison was good provided the model atmosphere was modified to use exospheric temperatures based on actual measurements by the incoherent scatter radar. A comparison with the results obtained at Malvern (Paper I) confirmed that the saturation time for the protonosphere at L = 1.8 is far less than at L = 2.6 and that the downward flux from the saturated protonosphere was also less.  相似文献   

8.
9.
Until now the presence of F-region irregularities responsible for spread-F (sp-F) traces in ionograms has been considered as a purely night-time phenomenon extending sporadically to the early morning hours. We herein report that, on two occasions (26 March 1974 and 1 February 1984) similar irregularities were observed between 1400 and 1600 hours local time with the Jicamarca radar. These irregularities caused enhancements in the power of the radar echo of as much as two orders of magnitude, were found over a region of a few hundred kilometers on the topside of the F-region extending from around 600 to 1000 km altitude, and persisted for 1–2 h. The irregularities were aspect sensitive (aligned with the magnetic field) and produced echoes with a fading rate of the order of one to a few seconds. The background zonal electric field, inferred from the vertical drift velocity, was fairly constant in altitude, with values smaller than 0.1 mV m−1. During the duration of the events, zonal components of both signs occurred, with the component passing through zero several times. We have no information on the vertical component of E. These irregularities could not be observed with ground-based ionosondes, since they are on the topside of the F-region. They may be related to fossil bubbles that are responsible for HF ducting observed by satellites.  相似文献   

10.
In the late winter of 1988 and 1989, three NASA sounding rockets were flown through the auroral electrojet from ESRANGE (Sweden) as part of the E-region Rocket-Radar Instability Study (ERRIS). Many ground-based instruments supported these flights, including the EISCAT, STARE, and CUPRI radars, as well as all-sky cameras, riometers, and magnetometers. In this paper we summarize the observations of the Cornell University Portable Radar Interferometer (CUPRI), which detected coherent backscatter from 3-m irregularities in the auroral E-region. Twenty hours of power spectra and interferometry data are available, and, during the 1989 campaign, three weeks of nearly continuous Range-Time-Intensity (RTI) and first moment data were recorded.  相似文献   

11.
Statistical analysis methods used to define the amplitude distributions of signals returned from the ionosphere are discussed in this paper. Emphasis is placed on determining accurately the parameter B, which is the ratio of steady to random components present in a signal. Thus B > 1 if the signal is dominated by the steady component, and B < 1 when the random components dominate. This study investigates the characteristics of B for F-region and E-region ionospheric echoes, as well as some types of spread-F, observed at the southern mid-latitude station Beveridge (37.3 S and 144.6 E). The results indicate that amplitude measurements obtained in approximately 100 s are adequate for determining B. The results also illustrate some effects that the E-region can have on F-region echoes.It is found that frequency spreading, the most common type of spreading observed at Beveridge, displays strong specular reflections and some signal variation due to interference at the leading edge of the F-region echo (i.e. B > 2). Within the spread echo B fluctuates between 0 and about 1.5 but is typically less than 1. The autocorrelation function of signal amplitude has a relatively large coherence interval, suggesting that this type of spread-F is due to interference of specular reflections from coherent irregularity structures with horizontal scale sizes of tens of kilometres rather than scattering from small scale irregularities. A second form of spread-F which would generally be classified as frequency spreading on standard ionoerams is actually due to off-vertical reflections from patches ol irregularities which originate south (poleward) of Beveridge. Echoes within this oblique spread-F (OS-F) do not exhibit coherence indicating that the irregularities responsible are of a smaller scale than those producing normal frequency spread. Finally, the phenomenon of spreading occurring on the second hop, but not the first hop trace is studied. It is shown that the form of the second hop echoes can be reproduced using a simple geometric model of ground scatter. The interpretation is supported by the fact that B for spread second hop echoes is less than 1 whereas it is much greater than 1 for the corresponding first hop echoes.  相似文献   

12.
Data from a chain of seven ionosondes in the range of 56–38 N and 1–38° E geographic coordinates were analysed to illustrate the global and regional behaviour of the mid-latitude F-region for some selected geomagnetic storms that occurred during the solar cycle 21. It was found that there are different spatial scales in the response of the mid-latitude ionosphere to the disturbance in the magnetosphere-ionosphere thermosphere system. The physical mechanisms and processes are discussed in relation to the relevance of various theories in the understanding of the dynamics of ionospheric storms.  相似文献   

13.
14.
It is now an established fact that during extremely strong magnetic storms a sudden anomalous decrease in the F-layer critical frequency foF2 is sometimes noticed at the equator around noon-time and the duration of this effect is known to be anywhere between some tens of minutes to several hours. As an extension of earlier work by Turunen and Rao, 1980, seven severe auroral storm events based on AE index have been selected during the period July 1958–June 1960 and their effects on the equatorial ionosphere have been investigated utilizing the published ionospheric data for the chain of Indian stations starting from equatorial latitudes and extending up to the mid-latitudes. From this study, it is noted that at the equator around noontime the foF2 values decrease and the noon bite-out phenomena are enhanced. However, as one goes towards mid-latitudes this trend is reversed. Because of this, the Appleton anomaly is also enhanced during disturbed days. Besides, the fFs values at the magnetic equator show an increase during disturbed days indicating thereby that the eastward equatorial electrojet current is enhanced on disturbed days. This suggests that the auroral electrojet current is coupled to the equatorial electrojet current possibly via the magnetosphere.  相似文献   

15.
Earlier work which provided evidence for coupling between pressure variations in the stratosphere and lower ionosphere in winter has been extended. Day-to-day changes in the height of fixed electron density isopleths in the E-region at a middle latitude often exhibit quasi-oscillations with amplitudes between 2 and 10km and periods between 5 and 30 days. It is found that the correlation between these oscillations and corresponding variations in the height of winter isobaric surfaces in the stratosphere, resulting from the presence of planetary-scale waves, is sometimes good and sometimes poor. Examination of the type of wave disturbance in the stratosphere and of the stratospheric zonal wind profiles suggests that the conditions for stratosphere-ionosphere coupling are met only when well-defined planetary waves of increasing amplitude with height are seen in the lower stratosphere and when the stratospheric zonal wind pattern is favourable to the vertical propagation of such waves.  相似文献   

16.
Accurate measurement of the electron density profile and its variations is crucial to further progress in understanding the physics of the disturbed equatorial ionosphere. To accomplish this, a plasma frequency probe was included in the payload complement of two rockets flown during the CONDOR rocket campaign conducted from Peru in March 1983. In this paper we present density profiles of the disturbed equatorial ionosphere from a night-time flight in which spread-F conditions were present and from a day-time flight during strong electrojet conditions. Results from both flights are in excellent agreement with simultaneous radar data in that the regions of highly disturbed plasma coincide with the radar signatures. The spread-F rocket penetrated a topside depletion during both the upleg and downleg. The electrojet measurements showed a profile peaking at 1.3 × 105cm−3 at 106 km, with large scale fluctuations having amplitudes of roughly 10 % seen only on the upward gradient in electron density. This is in agreement with plasma instability theory. We further show that simultaneous measurements by fixed-bias Langmuir probes, when normalized at a single point to the altitude profile of electron density, are inadequate to correctly parameterize the observed enhancements and depletions.  相似文献   

17.
In a previous paper, we considered the penetration of DC thundercloud electric fields E into the ionosphere and also into the region between the ionosphere and the ground (Velinov and Tonev, 1994). In the present paper, we extend the analysis by making a more precise approximation of the electric conductivity profiles by 5–10 piecewise exponential functions of altitude instead of the two functions used up to now. This allows a much more realistic representation of the atmospheric conductivity profile. Besides, Maxwell's equations are solved for more general boundary conditions, taking into account that the electrosphere is not a perfect conductor. This leads to the appearance not only of the transverse Er (as had been assumed until now), but also of the geomagnetic field-aligned Ez component of the penetrating thundercloud electric fields. The computations show that both Er and Ez cause significant variations of the electron density profiles N(z) in the ionosphere.  相似文献   

18.
Two Centaure rockets were launched from Thumba (0 47′S dip). India, with a new arrangement of double probe sensors for the simultaneous measurements of the irregularities in the electron density and the electric field along and perpendicular to the spin axis of the rocket. These experiments were carried out during the period when type I irregularities were observed with the VHF backscatter radar at Thumba. Irregularities with scale sizes ranging from a few meters to a few kilometers in the electron density and in the electric field components both in the east-west and the vertical direction could be studied with these experiments. Irregularities in the electric field in the medium scale size range (30–300 m) were observed with peak to peak amplitudes up to 20 mV m−1 and in the small scale (⩽ 15 m) with peak to peak amplitudes up to 5 mV m−1. Horizontally propagating waves with horizontal scale sizes up to 2.5 km were observed in the region below 105.5 km. Using linear theory for the electrojet irregularities, it was found that for 5 % perturbations in the electron density, the amplitude of the electric field can be as large as 20–30 mV m−1. The spectrum of the irregularities in the vertical electric field in the rocket frame of reference was calculated and it was found that for the range of scale sizes between 10 and 70 m, the mean spectral index was −2.7 and −2.6. while in the scale size range 2–10 m it was −4.0 and −5.1 for the flights C-77 and C-73, respectively.  相似文献   

19.
20.
Long-term variations of electron concentration in the mid-latitude ionosphere, independent of heliogeophysical conditions and the meteorological characteristics of the atmosphere, have been determined. It is suggested that a long-term decrease of atomic and molecular oxygen concentrations in the mid-latitude thermosphere is the most possible reason for the trends found in ionospheric parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号