首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During the Worldwide Atmospheric Gravity-wave Study (WAGS) in October 1985, the EISCAT incoherent scatter radar was used to observe the generation of atmospheric gravity waves in the auroral zone in conjunction with a network of magnetometers and riometers. At the same time a chain of five ionosondes, an HF-Doppler system, a meteor radar and a radio telescope array were used to monitor any waves propagating southwards over the U.K.The EISCAT measurements indicated that in the evening sector both Joule heating and Lorentz forcing were sufficiently strong to generate waves, and both frequently showed an intrinsic periodicity caused by periodic variation in the magnetospheric electric field.Two occasions have been examined in detail where the onset of a source with intrinsic periodicity was followed by a propagating wave of the same period which was detected about an hour later, travelling southwards at speeds of over 300 m s−1, by the ionosondes and the HF-Doppler radar. In both cases the delay in arrival was consistent with the observed velocity, which suggests a direct relationship between a source in the auroral zone and a wave observed at mid-latitude.  相似文献   

2.
Excitation of the guided acoustic-gravity waves in the upper thermosphere in response to enhanced auroral electrojets is calculated in the absence of dissipation under a fully ducted condition. It is shown that a model atmosphere terminated with an isothermal half-space supports a long-period, high-speed mode, which is the interface mode guided along the half-space termination of the atmosphere. The dispersion properties and the vertical distributions of the kinetic energy density of this mode are similar to those of the so called ‘gravity pseudomode’. The excitation of this mode is computed to show how the wave generation depends on the source mechanism (the Lorentz force and joule heating) and on the source altitude. Joule heating can generate the waves with appreciable amplitudes. On the other hand, the Lorentz force prevailing in the lower region cannot excite the waves with any observable amplitudes. The waves are intensified with increasing the heat source altitude. The gross features of the calculated waves indicate that the ducted thermospheric gravity waves are capable of producing observable thermospheric waves. It is therefore suggested that further examination of the excitation of the ducted acoustic-gravity waves undergoing partial reflections due to viscosity and thermal conduction should be useful for the theory of large-scale travelling ionospheric disturbances.  相似文献   

3.
A theoretical study of the effects of background winds on wind shear-produced sporadic-E layers requires an account of the dynamo electric fields which result from the plasma motion produced by these winds. When a sporadic-E layer is carried downward by a descending wind shear the final height of the layer may vary by some 10 km depending on the background wind. Due to a loading effect on the dynamo, for a given background wind, the final height may vary by about 6 km depending on the degree of ionization in the E-layer in the magnetically conjugate hemisphere. The time scale for dispersal of a sporadic-E layer by drifts in wind-induced electric fields may be as little as 2 h.  相似文献   

4.
Theoretical and experimental work since 1970 is summarized. Mid-latitude sporadic-E is most likely due to a vertical shear in the horizontal east-west wind and this theory accounts for the detailed observations of the wind and electron density profiles. Preferred heights of sporadic-E are separated by about 6km and descending layers are often seen moving down with velocities in the range 0.6–4 ms. Sometimes sporadic-E layers are very flat and uniform, and at other times form clouds of electrons 2–100km in size moving horizontally at 20–130 ms−1. Sporadic-E is probably not correlated with meteor showers; this is a rather surprising result since the ions are meteor debris.The major problems with windshear theory are to account for the dramatic seasonal variation and, to a lesser extent, for the geographical and diurnal distributions.The Q-type equatorial sporadic-E appears to be due to the gradient instability. There is a very much smaller amount of new experimental data available in this area.  相似文献   

5.
An attempt is made at the statistical analysis of small-scale disturbances in the stratosphere and mesosphere with the aid of meteorological rocket observations at many stations from 77°N to 8°S for several years.By applying a high-pass filter to daily rocket data in the height range 20–65 km, wind and temperature fluctuations with characteristic vertical scales close to or less than 10 km are obtained, which are considered to be due to internal gravity waves. Results are expressed in terms of parameters which tend to emphasize smallscale vertical fluctuations and which should provide qualitative measures of gravity wave activity.It is found that the gravity wave activity shows a notable annual cycle in higher latitudes with the maximum in wintertime, while it shows a semiannual cycle in lower latitudes with the maxima around equinoxes. It is also found from the standard deviation around the monthly mean that the temporal variability of gravity waves is very large.  相似文献   

6.
Night-time observations of O(1D) λ630 nm and O(1S) λ558 nm thermospheric emissions were made at Mawson, Antarctica (67.6°S, 62.9°E) from 1982 to 1989, using a three-field photometer. Crossspectral analysis of the data was used to extract frequencies and horizontal trace velocities of periodic structures. Structures in the λ630 nm emission were characteristic of large-scale waves, and those in the λ558 nm emission were characteristic of medium-scale waves. The results showed distinct polarisation of the propagation azimuths; waves in the λ630 nm emission propagated approximately northwestward throughout the 8 yr period, whilst propagation azimuths of waves in the λ558 nm emission appeared to be solar-cycle-dependent. It is suggested that waves observed in the λ630 nm emission were of predominantly auroral electrojet origin, whilst those observed in the λ558 nm emission were of both auroral and tropospheric origin.  相似文献   

7.
Recent progress on interactions between breaking gravity waves and the diurnal tide in the upper mesosphere and lower thermosphere is reviewed, mainly based on the recent results of our numerical models.  相似文献   

8.
Observations of sporadic-E (Es) activity have been carried out during 1970–1974 by using a 25 MHz sounder operating at Iioka, Japan (36°N). Earth backscatter echoes were presented on range-azimuth-intensity plots and recorded on facsimile paper.Examination of individual Es clouds has shown the variations in sizes and lifetimes with time of day and season. Es clouds drifted predominantly toward the west-southwest. Analysis of drift vectors revealed the presence of a north-south variation of the drift direction with a semi-diurnal period. The observed Es cloud motions are consistent with the interpretation that Es clouds move with the neutral winds in the lower E-region. The seasonal dependence of azimuthal occurrence of Es echoes revealed the north-south and east-west difference over Japan. The north-south difference is found to be due to the seasonal movement of the latitudinal position of the maximum Es activity. The east-west difference which is mainly caused by the difference in backscatter coefficient between land and sea was found during only a few non-summer months.  相似文献   

9.
The influence of the higher harmonics of an internal gravity wave on the formation of nonlinear quasi-periodic disturbances in the F-region of the Earth's ionosphere is considered. It is shown that the Boussinesq approximation cannot be used in describing a plane nonlinear gravity wave as nonlinearities associated with the compressibility of the atmosphere have to be taken into account.  相似文献   

10.
Local variation of atmospheric heating which might occur in inhomogeneities of various constituents such as ozone or molecular oxygen may generate gravity waves. These perturbations are induced by the terminator crossing constituent inhomogeneities of short lifetime. The quasi-point heating model developed here shows that the largest amplitude must appear vertically above the source, where the perturbation frequency is close to the Vaisala-Brunt frequency. Numerical calculations not band limited in the frequency suggest several characteristics of the perturbation.  相似文献   

11.
Analysis of pressure fluctuations observed over a period of several days using an array of microbarographs has shown the existence of long trains of gravity waves with two or more waves often present simultaneously. Meteorological data from radiosonde ascents indicates that many of the waves have a velocity which matches that of the background wind at some level within the troposphere. Generally this height corresponds to that of a frontal zone marking the transition between air masses and it is suggested that the waves may have been generated by shear flow instability within the frontal layer. Theoretical considerations, based on a three-layer model troposphere, show that some of the observed waves could have been ducted in or near the frontal zone. Some evidence is found to indicate that a non-linear wave-wave interaction between pairs of waves occurring simultaneously in the frontal zone could yield secondary waves with the characteristics of the gravity waves which had been observed in the thermosphere at appropriate times and whose group paths were traced to source regions in the troposphere in the general vicinity of the microbarograph array.  相似文献   

12.
It is assumed that atmospheric gravity waves, resulting in travelling ionospheric disturbances (TIDs), and electric fields, generated by convective thunderstorms, have a reasonable influence on the large-scale structure of premidnight equatorial spread-F irregularities. The responsible mechanisms, viz the superposition of thunderstorm generated electric fields on the ionospheric electric fields being the determining factor for irregularity generation and the steepening of TID structures due to spatial resonance, are briefly outlined. It is recalled that convective activity is most pronounced in the intertropical convergence zone over the African and South American continents. A model based on the typical features of seasonal and geographical variation of tropical convection generating the TIDs is presented which can explain seasonal and geographical variations of premidnight equatorial spread-F occurrence.  相似文献   

13.
Results of a General Circulation Model simulation of the dynamics of the middle atmosphere are shown focusing our attention to the tidal wave mean flow interaction and propagation of migrating diurnal and semidiurnal tides in the model. It is shown that migrating tidal waves are well simulated and the amplitude growth with height is effectively suppressed by the convective adjustment in the model. It is also shown that the dissipating solar diurnal tide plays an important role in inducing mean zonal winds in the low latitude region of the lower thermosphere. The behavior of non-migrating diurnal tides is also analyzed to show that non-migrating diurnal tides have significant amplitudes in the lower thermosphere. It is suggested that the non-migrating diurnal tide, which propagates against background mean zonal winds, has the possibility to propagate into the middle to high latitude region due to the Doppler effect.  相似文献   

14.
A new quartic dispersion equation in the square of the complex vertical wave number is derived by employing the ‘shallow atmosphere’ approximation and an ion drag approximation. These approximations allow the coefficients of the quartic equation to be given in terms of the corresponding cubic equation, which neglects the Coriolis force and the zonal ion drag component, but modified to take into account these neglected effects. Coupling between the extraordinary viscosity wave mode and the other three wave modes is highlighted and numerical solutions are compared for this quartic equation, an exact eighth order equation and the cubic equation. For the first time the validity of using the ‘shallow atmosphere’ approximation to describe internal gravity wave motions is demonstrated.  相似文献   

15.
Ground-based optical instrumentation supported the AIDA '89 wind measurement comparisons by describing the gravity waves affecting the 80–100 km altitude region during clear dark hours over Puerto Rico. This study tabulates the characteristics of gravity waves with fractional column emission rate amplitudes up to 30% and with periods greater than 45 min as seen in the O2 airglow layer by MORTI, a sensor of O2 rotational temperature and column emission rate in twelve look directions. Data from seven other sensors operating at Guanica and the Arecibo Observatory are then compared with the MORTI data to check the consistency of the entire data set with the wave parameters, primarily velocities, deduced from MORTI. Nine nights of visually distinct crests and troughs were found, one of which was dominated by an evanescent wave and the rest by internal waves. The nights of 5/6 April and 4/5 May 1989 were selected for multi-sensor comparisons. The comparisons showed substantial agreement between the MORTI characterizations and the observations by others, and most differences were attributed to complexities introduced by higher frequency components with shorter coherence distances. Nightly summaries of the O2 rotational temperature and column emission rate are also given.  相似文献   

16.
Simultaneous observations of an ionospheric wave by two incoherent scatter facilities and three Faraday-rotation polarimeters have provided measurements of the frequency, vertical wavelength, horizontal wavelength and direction of propagation of the wave. These measured values confirm the Hines dispersion equation for atmospheric gravity waves.  相似文献   

17.
A model of the ionospheric E-region between 90 and 130 km altitude is constructed with normal molecular ions and two species of metal ion with different masses. This paper investigates whether the vertical structure observed in sporadic-E layers can be accounted for by separation of different ion species according to their mass. The result of the investigation is substantially negative. Another mechanism for range spread sporadic-E has signatures that may be sought in observational data.  相似文献   

18.
Observations made on 10 July 1987 with the EISCAT UHF radar are presented. The F-region measurements of both electron density and field-aligned ion velocity show that an upward propagating gravity wave with a period of about 1 h is present. The origin of the gravity wave is probably auroral. The E-region ion velocities show a tidal wave and both upward and downward propagating gravity waves. The gravity waves have three dominant periods with a possible harmonic relationship and similar vertical wavelengths. These waves are either reflected at a single reflection level, ducted between two levels, or they are generated in a non-linear interaction between gravity and tidal waves. The E-region electron density is dominated by particle precipitation. After a short burst of more intense precipitation, a sporadic E-layer forms at 105km and then disappears 40min later. Within this time, the layer rises and falls by a few kilometres, following closely the motion of a convergent null in the velocity profile. We suggest that the formation and destruction of this layer is controlled by both the precipitation, which indirectly provides a source of metal ions through charge exchange, and the superposition of gravity waves and the tidal wave.  相似文献   

19.
Observations of nitric oxide (NO) by the Solar Mesosphere Explorer (SME) during equinox indicate a lower-thermosphere equatorial minimum which is at variance with theoretical predictions. To address this discrepancy a zonally averaged model of the thermosphere and upper mesosphere is used to evaluate the influence of a latitude variation in turbulence. Five numerical simulations were performed with different latitude structures of eddy diffusion (KT), ranging from uniform in latitude, peaks at low, mid-, or high-latitude, to a hemispherically asymmetric distribution. A local increase in eddy diffusion causes the lower thermosphere to cool and induces a latitude pressure gradient that drives horizontal and vertical winds. The circulation, turbulent transport and temperature dependent chemistry act to change the distribution of species. Comparison of the model predictions of NO with SME data, and simulated wind and temperature structure with empirical climatology, indicates a preference for a midlatitude peak in KT.  相似文献   

20.
The overreflection and overtransmission of a gravity wave incident upon a shear layer in an inviscid, rotating fluid is investigated. It is found that overreflection of the wave occurs even for values of the Richardson number higher than 0.25. This result was obtained in the Boussinesq as well as in the hydrostatic approximation. However, the resonant overreflection, appearing in the Boussinesq approximation, does not show up in the hydrostatic case. The reasons for this difference are explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号