首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
J. X. LI  G. M. LI  K. Z. QIN  B. XIAO 《Geofluids》2011,11(2):134-143
The Duobuza porphyry copper–gold deposit (proven Cu resources of 2.7 Mt, 0.94% Cu and 13 t gold, 0.21 g t?1 Au) is located at the northern margin of the Bangong‐Nujiang suture zone separating the Qiangtang and Lhasa Terranes. The major ore‐bearing porphyry consists of granodiorite. The alteration zone extends from silicification and potassic alteration close to the porphyry stock to moderate argillic alteration and propylitization further out. Phyllic alteration is not well developed. Sericite‐quartz veins only occur locally. High‐temperature, high‐salinity fluid inclusions were observed in quartz phenocrysts and various quartz veins. These fluid inclusions are characterized by sylvite dissolution between 180 and 360°C and halite dissolution between 240 and 540°C, followed by homogenization through vapor disappearance between 620 and 960°C. Daughter minerals were identified by SEM as chalcopyrite, halite, sylvite, rutile, K–feldspar, and Fe–Mn‐chloride. They indicate that the fluid is rich in ore‐forming elements and of high oxidation state. The fluid belongs to a complex hydrothermal system containing H2O – NaCl – KCl ± FeCl2 ± CaCl2 ± MnCl2. With decreasing homogenization temperature, the fluid salinity tends to increase from 34 to 82 wt% NaCl equiv., possibly suggesting a pressure or Cl/H2O increase in the original magma. No coexisting vapor‐rich fluid inclusions with similar homogenization temperatures were found, so the brines are interpreted to have formed by direct exsolution from magma rather than trough boiling off of a low‐salinity vapor. Estimated minimum pressure of 160 MPa imply approximately 7‐km depth. This indicates that the deposit represents an orthomagmatic end member of the porphyry copper deposit continuum. Two key factors are proposed for the fluid evolution responsible for the large size of the gold‐rich porphyry copper deposit of Duobuza: (i) ore‐forming fluids separated early from the magma, and (ii) the hydrothermal fluid system was of magmatic origin and highly oxidized.  相似文献   

2.
The building materials of the Theatre of Marcellus, 44–11 bce , reflect Roman builders' careful selections of tuff and travertine for dimension stone and volcanic aggregates for pozzolanic concretes. The vitric–lithic–crystal Tufo Lionato tuff dimension stone contains a high proportion of lava lithic fragments, which increase its compressive strength and decrease water sorption, enhancing durability. Sophisticated installations of travertine dimension stone reinforce the tuff masonry, which is integrated with durable concrete walls and barrel vaults. The pozzolanic mortars of the concretes contain harenae fossiciae mainly from the intermediate alteration facies of the mid‐Pleistocene, scoriaceous Pozzolane Rosse pyroclastic flow. They have pervasive interpenetrating pozzolanic cements, including strätlingite, similar to high‐quality, imperial era mortars. Concrete walls are faced with refined Tufo Lionato opus reticulatum and tufelli, and opus testaceum of fired, greyish‐yellow brick. The exploratory concrete masonry, which includes some of the earliest examples of brick facings and strätlingite cements in Rome, and the integration of these materials in complex architectural elements and internal spaces, reflect the highly skilled workmanship, rigorous work‐site management and technical supervision of Roman builders trained in republican era methods and materials.  相似文献   

3.
Highly saline, deep‐seated basement brines are of major importance for ore‐forming processes, but their genesis is controversial. Based on studies of fluid inclusions from hydrothermal veins of various ages, we reconstruct the temporal evolution of continental basement fluids from the Variscan Schwarzwald (Germany). During the Carboniferous (vein type i), quartz–tourmaline veins precipitated from low‐salinity (<4.5wt% NaCl + CaCl2), high‐temperature (≤390°C) H2O‐NaCl‐(CO2‐CH4) fluids with Cl/Br mass ratios = 50–146. In the Permian (vein type ii), cooling of H2O‐NaCl‐(KCl‐CaCl2) metamorphic fluids (T ≤ 310°C, 2–4.5wt% NaCl + CaCl2, Cl/Br mass ratios = 90) leads to the precipitation of quartz‐Sb‐Au veins. Around the Triassic–Jurassic boundary (vein type iii), quartz–haematite veins formed from two distinct fluids: a low‐salinity fluid (similar to (ii)) and a high‐salinity fluid (T = 100–320°C, >20wt% NaCl + CaCl2, Cl/Br mass ratios = 60–110). Both fluids types were present during vein formation but did not mix with each other (because of hydrogeological reasons). Jurassic–Cretaceous veins (vein type iv) record fluid mixing between an older bittern brine (Cl/Br mass ratios ~80) and a younger halite dissolution brine (Cl/Br mass ratios >1000) of similar salinity, resulting in a mixed H2O‐NaCl‐CaCl2 brine (50–140°C, 23–26wt% NaCl + CaCl2, Cl/Br mass ratios = 80–520). During post‐Cretaceous times (vein type v), the opening of the Upper Rhine Graben and the concomitant juxtaposition of various aquifers, which enabled mixing of high‐ and low‐salinity fluids and resulted in vein formation (multicomponent fluid H2O‐NaCl‐CaCl2‐(SO4‐HCO3), 70–190°C, 5–25wt% NaCl‐CaCl2 and Cl/Br mass ratios = 2–140). The first occurrence of highly saline brines is recorded in veins that formed shortly after deposition of halite in the Muschelkalk Ocean above the basement, suggesting an external source of the brine's salinity. Hence, today's brines in the European basement probably developed from inherited evaporitic bittern brines. These were afterwards extensively modified by fluid–rock interaction on their migration paths through the crystalline basement and later by mixing with younger meteoric fluids and halite dissolution brines.  相似文献   

4.
The Kalahari Goldridge deposit is located in the Archaean Kraaipan greenstone belt in the north-west province of South Africa. Gold mineralization in this deposit is hosted within banded iron formation which is flanked by a mafic schist in the footwall and clastic metasedimentary units in the hanging wall. Data from carbonate minerals from mineralized veins and bulk rock from the A and D zone ore bodies have helped to define the ultimate origin of the ore-forming fluids and their migration history. Carbon isotope ratios of carbonates from both the A and D zone ore bodies have tight clustering from −7.6 to −5.3‰ that indicates a unique origin for the ore-forming fluids associated with the mineralization at Kalahari Goldridge. The δ18O values of the carbonates have been influenced by temperature gradients and variable degrees of fluid–rock interaction promoting oxygen isotope exchange between ore fluid and host rocks. Minimum 87Sr/86Sr ratio values of 0.70354 in mineralized veins are most consistent with ore-forming fluids being relatively pristine with a mantle origin. Strontium and the corresponding ore-forming fluids were most likely derived from mantle-derived magmatic rocks probably represented by the meta-basaltic rocks that underlie the ferruginous package in the Kraaipan greenstone belt. Strontium isotopic composition of vein carbonates show considerable variation in 87Sr/86Sr ratios ranging from 0.70354 to 0.73914. This is consistent with an ore fluid composition that has been modified by the addition of radiogenic Sr possibly during passage of fluid through siliciclastic country rock concomitant with the observed hydrothermal alteration.  相似文献   

5.
Metalliferous (Fe–Cu–Pb–Zn) quartz–carbonate–sulphide veins cut greenschist to epidote–amphibolite facies metamorphic rocks of the Dalradian, SW Scottish Highlands, with NE–SW to NW–SE trends, approximately parallel or perpendicular to regional structures. Early quartz was followed by pyrite, chalcopyrite, sphalerite, galena, barite, late dolomite–ankerite and clays. Both quartz–sulphide and carbonate vein mineralisation is associated with brecciation, indicating rapid release of fluid overpressure and hydraulic fracturing. Two distinct mineralising fluids were identified from fluid inclusion and stable isotope studies. High temperature (>350°C) quartz‐precipitating fluids were moderately saline (4.0–12.7 wt.% NaCl equivalent) with low (approximately 0.05). Quartz δ18O (+11.7 to +16.5‰) and sulphide δ34S (?13.6 to ?1.1‰) indicate isotopic equilibrium with host metasediments (rock buffering) and a local metasedimentary source of sulphur. Later, low‐temperature (TH = 120–200°C) fluids, probably associated with secondary carbonate, barite and clay formation, were also moderately saline (3.8–9.1 wt.% NaCl equivalent), but were strongly enriched in 18O relative to host Dalradian lithologies, as indicated by secondary dolomite–ankerite (δ18O = +17.0 to +29.0‰, δ13C = ?1.0 to ?3.0‰). Compositions of carbonate–forming fluids were externally buffered. The veins record the fluid–rock interaction history of metamorphic host rocks during cooling, uplift and later extension. Early vein quartz precipitated under retrograde greenschist facies conditions from fluids probably derived by syn‐metamorphic dehydration of deeper, higher‐grade rocks during uplift and cooling of the Caledonian metamorphic complex. Veins are similar to those of mesothermal veins in younger Phanerozoic metamorphic belts, but are rare in the Scottish Dalradian. Early quartz veins were reactivated by deep penetration of low‐temperature basin fluids that precipitated carbonate and clays in veins and adjacent Dalradian metasediments throughout the SW Highlands, probably in the Permo‐Carboniferous. This event is consistent with paragenetically ambiguous barite with δ34S characteristic of late Palaeozoic basinal brines.  相似文献   

6.
The Krafla geothermal system is located in Iceland's northeastern neovolcanic zone, within the Krafla central volcanic complex. Geothermal fluids are superheated steam closest to the magma heat source, two‐phase at higher depths, and sub‐boiling at the shallowest depths. Hydrogen isotope ratios of geothermal fluids range from ?87‰, equivalent to local meteoric water, to ?94‰. These fluids are enriched in 18O relative to the global meteoric line by +0.5–3.2‰. Calculated vapor fractions of the fluids are 0.0–0.5 wt% (~0–16% by volume) in the northwestern portion of the geothermal system and increase towards the southeast, up to 5.4 wt% (~57% by volume). Hydrothermal epidote sampled from 900 to 2500 m depth has δD values from ?127 to ?108‰, and δ18O from ?13.0 to ?9.6‰. Fluids in equilibrium with epidote have isotope compositions similar to those calculated for the vapor phase of two‐phase aquifer fluids. We interpret the large range in δDEPIDOTE and δ18OEPIDOTE across the system and within individual wells (up to 7‰ and 3.3‰, respectively) to result from variable mixing of shallow sub‐boiling groundwater with condensates of vapor rising from a deeper two‐phase reservoir. The data suggest that meteoric waters derived from a single source in the northwest are separated into the shallow sub‐boiling reservoir, and deeper two‐phase reservoir. Interaction between these reservoirs occurs by channelized vertical flow of vapor along fractures, and input of magmatic volatiles further alters fluid chemistry in some wells. Isotopic compositions of hydrothermal epidote reflect local equilibrium with fluids formed by mixtures of shallow water, deep vapor condensates, and magmatic volatiles, whose ionic strength is subsequently derived from dissolution of basalt host rock. This study illustrates the benefits of combining phase segregation effects in two‐phase systems during analysis of wellhead fluid data with stable isotope values of hydrous alteration minerals when evaluating the complex hydrogeology of volcano‐hosted geothermal systems.  相似文献   

7.
A group of 400–500 m long, bedding‐parallel calcite veins are exposed in the central La Popa Basin of northeastern Mexico. These veins provide a unique opportunity to determine the kilometer‐scale fluid–rock system associated with bedding‐parallel vein formation, and to test for sampling bias in studies that often use one or two samples to constrain the characteristics of regional‐scale paleohydrogeological systems. We use fluid inclusion microthermometry in conjunction with measurements of δ13C, δ18O, and 87Sr/86Sr ratios to constrain the vein‐forming fluid temperatures, compositions and sources, and compare these values along and between the veins to establish the homogeneity of the vein‐forming fluids and fluid–rock system. The δ13C values of the veins are close to those of the host rock, and average – 3.96‰ (PDB). The δ18O values of the veins are typically 1‰ lower than those of the host rocks, and average – 9.54‰ (PDB). Fluid inclusion homogenization temperatures average 137°C and inclusion salinities are all <6 wt% NaCl equivalent. The 87Sr/86Sr ratios of the veins average 0.70731 and are substantially lower than the values expected for the host rock. Calculated fluid δ18O values range from 4 to 10‰ (SMOW). The isotopic and microthermometric data indicate the veins most likely formed at depths of 3–4 km when meteoric water mixed with upward migrating, warm basinal brines. Vein microstructures and field characteristics indicate they formed from multiple slip events that most likely were associated with transport of individual fluid pulses that migrated along bedding planes. The large‐scale homogeneity of vein geochemistry is remarkable and demonstrates that only one or two samples would be sufficient to accurately characterize the kilometer‐scale paleohydrogeological system for these veins.  相似文献   

8.
The province of Burdur (SW Turkey) is seismically an active region. A structural, geochronological, petrographical, geochemical and fluid inclusion study of extension veins and fault‐related calcite precipitates has been undertaken to reconstruct the palaeofluid flow pattern in this normal fault setting in the Aegean region. A palaeostress analysis and U/Th dating of the precipitates reveals the neotectonic significance of the sampled calcites. Fluid inclusion microthermometry of calcites‐filling extension veins shows final melting temperatures (Tm ice) of 0°C. This indicates pure water, most likely of meteoric origin. The oxygen isotope values (?9.8‰ to ?6.5‰ VPDB) and the carbon isotopic composition (?10.4‰ to ?2.9‰ VPDB) of these calcites also show a near‐surface meteoric origin of the fluid responsible for precipitation. The microstructural characteristics of fault‐related calcites indicate that calcite precipitation was linked with fault activity. Final melting temperature of fault‐related calcites ranges between 0 and ?1.9°C. The oxygen isotope values show a broad range between ?15.0‰ and ?2.2‰ VPDB. Several of these calcites have a δ18O composition that is higher or lower than the oxygen isotopic composition of meteoric calcites in the area (i.e. between ?10‰ and ?6‰ VPDB). The δ13C composition largely falls within the range of the host limestones and reflects a rock‐buffered system. Microthermometry and stable isotopic study indicate a meteoric origin of the fluids with some degree of water–rock interaction or mixing with another fluid. Temperatures deduced from microthermometry and stable isotope analyses indicate precipitation temperatures around 50°C. These higher temperatures and the evidence for water–rock interaction indicate a flow path long enough to equilibrate with the host–rock limestone and to increase the temperature. The combined study of extension vein‐ and fault‐related calcite precipitates enables determining the origin of the fluids responsible for precipitation in a normal fault setting. Meteoric water infiltrated in the limestones to a depth of at least 1 km and underwent water–rock interaction or mixing with a residual fluid. This fluid was, moreover, tapped during fault activity. The extension veins, on the contrary, were passively filled with calcites precipitating from the downwards‐migrating meteoric water.  相似文献   

9.
Quartz veins hosted by the high‐grade crystalline rocks of the Modum complex, Southern Norway, formed when basinal fluids from an overlying Palaeozoic foreland basin infiltrated the basement at temperatures of c. 220°C (higher in the southernmost part of the area). This infiltration resulted in the formation of veins containing both two‐phase and halite‐bearing aqueous fluid inclusions, sometimes with bitumen and hydrocarbon inclusions. Microthermometric results demonstrate a very wide range of salinities of aqueous fluids preserved in these veins, ranging from c. 0 to 40 wt% NaCl equivalent. The range in homogenization temperatures is also very large (99–322°C for the entire dataset) and shows little or no correlation with salinity. A combination of aqueous fluid microthermometry, halogen geochemistry and oxygen isotope studies suggest that fluids from a range of separate aquifers were responsible for the quartz growth, but all have chemistries comparable to sedimentary formation waters. The bulk of the quartz grew from relatively low δ18O fluids derived directly from the basin or equilibrated in the upper part of the basement (T < 200°C). Nevertheless, some fluids acquired higher salinities due to deep wall‐rock hydration reactions leading to salt saturation at high temperatures (>300°C). The range in fluid inclusion homogenization temperatures and densities, combined with estimates of the ambient temperature of the basement rocks suggests that at different times veins acted as conduits for influx of both hotter and colder fluids, as well as experiencing fluctuations in fluid pressure. This is interpreted to reflect episodic flow linked to seismicity, with hotter dry basement rocks acting as a sink for cooler fluids from the overlying basin, while detailed flow paths reflected local effects of opening and closing of individual fractures as well as reaction with wall rocks. Thermal considerations suggest that the duration of some flow events was very short, possibly in the order of days. As a result of the complex pattern of fracturing and flow in the Modum basement, it was possible for shallow fluids to penetrate basement rocks at significantly higher temperatures, and this demonstrates the potential for hydrolytic weakening of continental crust by sedimentary fluids.  相似文献   

10.
G. R. OSINSKI 《Geofluids》2005,5(3):202-220
Combined field studies, optical and scanning electron microscopy, and electron microprobe studies of impactites from the Ries impact structure, Germany, have allowed a clearer picture of the hydrothermal system associated with the Ries impact event to be made. Hydrothermal alteration is concentrated within impact‐generated suevites in the interior of the crater (crater suevites) and around the periphery (surficial suevites), with minor alteration in the overlying sedimentary crater‐fill deposits. The major heat source for the Ries hydrothermal system was the suevite units themselves. Hydrothermal alteration of crater‐fill suevites is pervasive in nature and comprises several distinct alteration phases that vary with depth. An early phase of K‐metasomatism accompanied by minor albitization of crystalline basement clasts and minor chloritization, was followed by pervasive intermediate argillic alteration (predominantly montmorillonite, saponite, and illite) and zeolitization (predominantly analcite, erionite, and clinoptilolite). Hydrothermal fluids were typically weakly alkaline during the main stage of alteration. In contrast to the crater‐fill suevites, alteration within surficial suevites was typically restricted to montmorillonite and phillipsite deposition within cavities and fractures. The pervasive nature of the alteration within the crater‐fill suevites was likely due to the presence of an overlying crater lake; whereas alteration within surficial suevites typically occurred under undersaturated conditions with the main source of water being from precipitation. There are exceptional outcrops of more pervasively altered surficial suevites, which can be explained as locations where water pooled for longer periods of time. Hydrothermal fluids were likely a combination of meteoric waters that percolated down from the overlying crater lake and groundwaters that flowed in from the surrounding country rocks.  相似文献   

11.
The Dongsheng uranium deposit, the largest in situ leach uranium mine in the Ordos Basin, geometrically forms a roll‐front type deposit that is hosted in the Middle Jurassic Zhiluo Formation. The genesis of the mineralization, however, has long been a topic of great debate. Regional faults, epigenetic alterations in surface outcrops, natural oil seeps, and experimental findings support a reducing microenvironment during ore genesis. The bulk of the mineralization is coffinite. Based on thin‐section petrography, some of the coffinite is intimately intergrown with authigenic pyrite (ore‐stage pyrite) and is commonly juxtaposed with some late diagenetic sparry calcite (ore‐stage calcite) in primary pores, suggesting simultaneous precipitation. Measured homogenization temperatures of greater than 100°C from fluid inclusions indicate circulation of low‐temperature hydrothermal fluids in the ore zone. The carbon isotopic compositions of late calcite cement (δ13CVPDB = ?31.0 to ?1.4‰) suggest that they were partly derived from sedimentary organic carbon, possibly from deep‐seated petroleum fluids emanating from nearby faults. Hydrogen and oxygen isotope data from kaolinite cement (δD = ?133 to ?116‰ and δ18OSMOW = 12.6–13.8‰) indicate that the mineralizing fluids differed from magmatic and metamorphic fluids and were more depleted in D (2H) than modern regional meteoric waters. Such a strongly negative hydrogen isotopic signature suggests that there has been selective modification of δD by CH4±H2S±H2 fluids. Ore‐stage pyrite lies within a very wide range of δ34S (?39.2 to 26.9‰), suggesting that the pyrite has a complex origin and that bacterially mediated sulfate reduction cannot be precluded. Hydrocarbon migration and its role in uranium reduction and precipitation have here been unequivocally defined. Thus, a unifying model for uranium mineralization can be established: Early coupled bacterial uranium mineralization and hydrocarbon oxidation were followed by later recrystallization of ore phases in association with low‐temperature hydrothermal solutions under hydrocarbon‐induced reducing conditions.  相似文献   

12.
The Jian copper deposit, located on the eastern edge of the Sanandaj–Sirjan metamorphic zone, southwest of Iran, is contained within the Surian Permo‐Triassic volcano‐sedimentary complex. Retrograde metamorphism resulted in three stages of mineralization (quartz ± sulfide veins) during exhumation of the Surian metamorphic complex (Middle Jurassic time; 159–167 Ma), and after the peak of the metamorphism (Middle to Late Triassic time; approximately 187 Ma). The early stage of mineralization (stage 1) is related to a homogeneous H2O–CO2 (XCO2 > 0.1) fluid characterized by moderate salinity (<10 wt.% NaCl equivalent) at high temperature and pressure (>370°C, >3 kbar). Early quartz was followed by small amounts of disseminated fine‐grained pyrite and chalcopyrite. Most of the main‐ore‐stage (stage 2) minerals, including chalcopyrite, pyrite and minor sphalerite, pyrrhotite, and galena, precipitated from an aqueous‐carbonic fluid (8–18 wt.% NaCl equivalent) at temperatures ranging between 241 and 388°C during fluid unmixing process (CO2 effervescence). Fluid unmixing in the primary carbonaceous fluid at pressures of 1.5–3 kbar produced a high XCO2 (>0.05) and a low XCO2 (<0.01) aqueous fluid in ore‐bearing quartz veins. Oxygen and hydrogen isotope compositions suggest mineralization by fluids derived from metamorphic dehydration (δ18Ofluid = +7.6 to +10.7‰ and δD = ?33.1 to ?38.5‰) during stage 2. The late stage (stage 3) is related to a distinct low salinity (1.5–8 wt.% NaCl equivalent) and temperatures of (120–230°C) aqueous fluid at pressures below 1.5 kbar and the deposition of post‐ore barren quartz veins. These fluids probably derived from meteoric waters, which circulated through the metamorphic pile at sufficiently high temperatures and acquire the characteristics of metamorphic fluids (δ18Ofluid = +4.7 to +5.1‰ and δD = ?52.3 to ?53.9‰) during waning stages of the postearly Cimmerian orogeny in Surian complex. The sulfide‐bearing quartz veins are interpreted as a small‐scale example of redistribution of mineral deposits by metamorphic fluids. This study suggests that mineralization at the Jian deposit is metamorphogenic in style, probably related to a deep‐seated mesothermal system.  相似文献   

13.
The chemical evolution of fluids in Alpine fissure veins (open cavities with large free‐standing crystals) has been studied by combination of fluid inclusion petrography, microthermometry, LA‐ICPMS microanalysis, and thermodynamic modeling. The quartz vein systems cover a metamorphic cross section through the Central Alps (Switzerland), ranging from subgreenschist‐ to amphibolite‐facies conditions. Fluid compositions change from aqueous inclusions in subgreenschist‐ and greenschist‐facies rocks to aqueous–carbonic inclusions in amphibolite‐facies rocks. The fluid composition is constant for each vein, across several fluid inclusion generations that record the growth history of the quartz crystals. Chemical solute geothermometry, fluid inclusion isochores, and constraints from fluid–mineral equilibria modeling were used to reconstruct the pressure–temperature conditions of the Alpine fissure veins and to compare them with the metamorphic path of their host rocks. The data demonstrate that fluids in the Aar massif were trapped close to the metamorphic peak whereas the fluids in the Penninic nappes record early cooling, consistent with retrograde alteration. The good agreement between the fluid–mineral equilibria modeling and observed fluid compositions and host‐rock mineralogy suggests that the fluid inclusions were entrapped under rock‐buffered conditions. The molar Cl/Br ratios of the fluid inclusions are below the seawater value and would require unrealistically high degrees of evaporation and subsequent dilution if they were derived from seawater. The halogen data may thus be better explained by interaction between metamorphic fluids and organic matter or graphite in metasedimentary rocks. The volatile content (CO2, sulfur) in the fluid inclusions increases systematically as function of the metamorphic grade, suggesting that the fluids have been produced by prograde devolatilization reactions. Only the fluids in the highest grade rocks were partly modified by retrograde fluid–rock interactions, and all major element compositions reflect equilibration with the local host rocks during the earliest stages of postmetamorphic uplift.  相似文献   

14.
Calcite veins in Paleoproterozoic granitoids on the Baltic Shield are the focus of this study. These veins are distinguished by their monomineralic character, unusual thickness and closeness to Neoproterozoic dolerite dykes and therefore have drawn attention. The aim of this study was to define the source of these veins and to unravel their isotopic and chemical nature by carrying out fine‐scale studies. Seven calcite veins covering a depth interval of 50–420 m below the ground surface and composed of breccias or crack‐sealed fillings typically expressing syntaxial growth were sampled and analysed for a variety of physicochemical variables: homogenization temperature (Th) and salinity of fluid inclusions, and stable isotopes (87Sr/86Sr, 13C/12C, 18O/16O), trace‐element concentrations (Fe, Mn, Mg, Sr, rare earth elements) and cathodoluminescence (CL) of the solid phase. The fluid‐inclusion data show that the calcites were precipitated mainly from relatively low‐temperature (Th = 73–106°C) brines (13.4–24.5 wt.% CaCl2), and the 87Sr/86Sr is more radiogenic than expected for Rb‐poor minerals precipitated from Neoproterozoic fluids. These features, together with the distribution of δ13C and δ18O values, provide evidence that the calcite veins are not genetic with the nearby Neoproterozoic dolerite dykes, but are of Paleozoic age and were precipitated from warm brines expressing a rather large variability in salinity. Whereas the isotopic and chemical variables express rather constant average values among the individual veins, they vary considerably on fine‐scale across individual veins. This has implications for understanding processes causing calcite‐rich veins to form and capture trace metals in crystalline bedrock settings.  相似文献   

15.
The recently-developed laser microprobe 40argon-39 argon technique has been used to give a geological date for a rhyolitic tuff stone axe fragment from the Stonehenge environs. The method requires only milligramme-sized samples and gives dates of sufficient accuracy to aid in provenancing artefacts to sources, as well as information on the heating history of samples. The axe sample is of Lower Carboniferous date (341 ± 5 Ma) and this limits possible sources to outcrops within the Scottish Midland Valley and small altered exposures in Dartmoor. X-ray fluorescence analysis of the axe suggests the Scottish Midland Valley as the more likely source. The laser argon analysis also shows that the implement had not been heated in antiquity. Laser argon-argon dating can, therefore, be a useful tool in artefact study.  相似文献   

16.
Hominins living in southern India 74,000 years ago faced a deteriorating environment, as the global climate moved from interglacial into full glacial conditions. At the same time, South Asian populations witnessed the widespread deposition of tephra from the Sumatran Toba super-eruption, the largest explosive volcanic event of the past two million years. Here we report new data on the lithic technology and environmental context for a southern Indian site with hominin occupation in association with Toba tephra deposits: Jwalapuram Locality 3 in the Jurreru Valley. Sedimentological and isotopic studies demonstrate that a cooling trend was in effect in this part of southern India prior to the eruption, and that thick deposits of ash in the Jurreru Valley supported grassland communities before more wooded conditions were re-established. Detailed technological analyses of an expanded lithic sample from Locality 3 suggest cultural continuity after the eruptive event, and comparisons with lithic core technologies elsewhere indicate that Homo sapiens cannot be ruled out as the creator of these Middle Palaeolithic assemblages.  相似文献   

17.
Quartz veins acted as impermeable barriers to regional fluid flow and not as fluid‐flow conduits in Mesoproterozoic rocks of the Mt Painter Block, South Australia. Systematically distributed asymmetric alteration selvedges consisting of a muscovite‐rich zone paired with a biotite‐rich zone are centered on quartz veins in quartz–muscovite–biotite schist. Geometric analysis of the orientation and facing of 126 veins at Nooldoonooldoona Waterhole reveals a single direction along which a maximum of all veins have a muscovite‐rich side, irrespective of their specific individual orientation. This direction represents a Mesoproterozoic fluid‐flow vector and the veins represent permeability barriers to the flow. The pale muscovite‐rich zones formed on the downstream side of the vein and the dark biotite‐rich zones mark the upstream side. The alteration couplets formed from mica schist at constant Zr, Ga, Sc, and involved increases in Si, Na, Al and decreases in K, Fe, Mg for pale alteration zones, and inverse alteration within dark zones. The asymmetry of the alteration couplets is best explained by the pressure dependence of mineral–fluid equilibria. These equilibria, in combination with a Darcian flow model for coupled advection and diffusion, and with permeability barriers imposed by the quartz veins, simulate the pattern of both fluid flow and differential, asymmetric metasomatism. The determined vector of fluid flow lies along the regional foliation and is consistent with the known distribution of regional alteration products. The presence of asymmetric alteration zones in rock containing abundant pre‐alteration veins suggests that vein‐rich material may have generally retarded regional fluid flow.  相似文献   

18.
Most researchers in the Proterozoic eastern Mt Isa Block, NW Queensland, Australia, favour magmatic fluid and salt sources for sodic‐(calcic) alteration and iron oxide–copper–gold mineralization. Here we compare spatial, mineralogic and stable isotope data from regional alteration assemblages with magmatic and magmatic‐hydrothermal interface rocks in order to track chemical and isotopic variations in fluid composition away from inferred fluid sources. Tightly clustered δ18O values for magnetite, quartz, feldspar and actinolite for igneous‐hosted samples reflect high temperature equilibration in the magmatic‐hydrothermal environment. In contrast, these minerals record predominantly higher δ18O values in regional alteration and Cu–Au mineralization. This dichotomy reflects partial equilibration with isotopically heavier wallrocks and slightly lower temperatures. Increases in Si concentrations of metasomatic amphiboles relative to igneous amphiboles in part reflect cooling of metasomatic fluids away from igneous rocks. Variations in XMg for metasomatic amphiboles indicate local wallrock controls on amphibole chemistry, while variations in XCl/XOH ratios for amphiboles (at constant XMg) indicate variable aH2O/aHCl ratios for metasomatic fluids. Biotite geochemistry also reflects cooling and both increases and decreases in aH2O/aHCl for fluids away from plutonic rocks. Decreased aH2O/aHCl ratios for metasomatic fluids reflect in part scavenging of chlorine out of meta‐evaporite sequences, although this process requires already saline fluids. Local increases in aH2O/aHCl ratios, as well as local decreases in δ18O values for some minerals (most notably haematite and epithermal‐textured quartz), may indicate ingress of low salinity, low δ18O fluids of possible meteoric origin late in the hydrothermal history of the region. Taken together, our observations are most consistent with predominantly magmatic sources for metasomatic fluids in the eastern Mt Isa Block, but record chemical and isotopic variations along fluid flow paths that may be important in explaining some of the diversity in alteration and mineralization styles in the district.  相似文献   

19.
X. R. Ming  L. Liu  M. Yu  H. G. Bai  L. Yu  X. L. Peng  T. H. Yang 《Geofluids》2016,16(5):1017-1042
This study investigates the Wangfu Depression of the Songliao Basin, China, as a natural analogue site for Fe migration (bleaching) and mineralization (formation of iron concretions) caused by reducing CO2‐bearing fluids that leak along fractures after carbon capture, utilization, and storage. We also examined the origin of fracture‐filling calcite veins, the properties of self‐sealing fluids, the influence of fluids on the compositions of mudstone and established a bleaching model for the study area. Our results show that iron concretions are the oxidative products of precursor minerals (pyrite and siderite) during uplift and are linked to H2S and CO2 present in early stage fluids. The precipitation of calcite veins is the result of CO2 degassing and is related to CO2, CH4, and minor heavy hydrocarbons in the main bleaching fluids. In our model, fluids preferentially enter high‐permeability fracture systems and result in the bleaching of surrounding rocks and precipitation of calcite veins. The infilling of calcite veins significantly decreases the permeability of fractures and forces the fluids to slowly enter and bleach the mudstone rocks. The Fe2+ released during bleaching migrates to elsewhere with the solutions or is reprecipitated in the calcite veins and iron concretions. The formation of calcite veins reduces the fracture space and effectively prevents fluid flow. The fluids have an insignificant effect on minerals within the mudstone. In terms of the chemistry of the mudstone, only the contents of Fe2O3, U, and Mo change significantly, with the content of U increasing in the mudstone and the contents of Fe2O3 and Mo decreasing during bleaching.  相似文献   

20.
A reactive transport computer code has been employed to model hydrothermal alteration of a granitoid rock bordering a discrete vein channel. The model suggests that the grey sericitic and sericitic with remnant biotite alteration envelopes at the porphyry copper deposit at Butte, Montana, can be formed by a reducing, low pH, and low salinity fluid under constant temperature and pressure conditions of approximately 400 °C and less than 100 MPa during a time span of approximately 100 years or less. Hydrothermal alteration has little effect on the porosity of the host rock (Butte Quartz Monzonite), and the diffusivity of the aqueous species also changes little. A sequence of mineral reaction fronts characterizes the alteration envelopes. The biotite dissolution front occurs closest to the vein channel and marks the transition from the grey sericitic to sericitic with remnant biotite envelope. The plagioclase dissolution front occurs farthest into the matrix and marks the edge of relatively fresh Butte Quartz Monzonite. From the properties of the quasi‐stationary state approximation ( Lichtner 1988 ; Lichtner 1991 ), it follows that once the sequence of reaction fronts is fully established, their relative locations remain constant and the widths of the reaction zones increase with the square root of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号