首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 481 毫秒
1.
We compare laboratory and field examples of self‐organized mineral precipitates in porous media. Laboratory tests of silver chromate precipitation in glass beads and glass bead/gel mixtures produce structures such as periodic banding and mm‐size spherules. These are morphologically similar to the varied forms of iron oxide precipitates in the Jurassic Navajo Sandstone, Utah USA, that preserve records of former fluid redox boundaries in a porous and permeable sandstone. Experimental studies of periodic precipitates in porous media can provide valuable insight for understanding the diagenetic history of similar precipitates in natural environments.  相似文献   

2.
J. H. Bell  B. B. Bowen 《Geofluids》2014,14(3):251-265
Differential cement mineralogy is influenced by depositional textures, structural deformation, pore fluid chemistry, and ultimately influences landscape evolution by introducing heterogeneities in erodibility. In Southern Utah, the region West of the Kaibab uplift known as Mollies Nipple (Mollies) in Grand Staircase‐Escalante National Monument exhibits a complex history of fluid–sediment interactions, which has resulted in a localized zone of anomalous diagenetic iron sulfate (jarosite) mineralogy in a well‐exposed dune–interdune deposit within the Navajo Sandstone. Mineralogy and geochemistry of cements within this region are examined using reflectance and imaging spectroscopy, field investigations, microscopy, and whole‐rock geochemical analyses. These data show that the in‐situ jarosite cement is localized to a plane along the highest ridge of the butte, providing an armor along with other secondary cements, which controls the butte's geomorphic evolution. The jarosite cement is associated with other mineralogies suggesting that the sulfate was one of the latest fluid‐related precipitates in the paragenetic sequence. It was preceded by a regional bleaching event, precipitation of clay cements, some localized concretionary iron oxide precipitation, and formation of deformation bands. At least one generation of dense iron oxide mineralization is associated with cataclastic brittle deformation predating the sulfate precipitation. Trace element geochemistry of cements shows certain metal oxide populations associated with extremely high (>2000 ppm) arsenic values. We interpret the combination of spatial mineral distribution, observed paragenetic sequence, and trace element geochemistry to suggest this region experienced acid sulfate diagenesis along fracture‐controlled fluid conduits related to weathering of proximal, unidentified, sulfides, or H2S associated with deep source beds. Jarosite is highly soluble, and its presence suggests that abundant fluid flow has not occurred in this region since its formation. This terminal cement‐forming event must have occurred prior to sandstone exhumation and erosion to form the current extreme landscape at Mollies. This site exhibits the influence that fluid geochemistry, sedimentary mineralogy, and structural fabric have on geomorphic evolution.  相似文献   

3.
X. R. Ming  L. Liu  M. Yu  H. G. Bai  L. Yu  X. L. Peng  T. H. Yang 《Geofluids》2016,16(5):1017-1042
This study investigates the Wangfu Depression of the Songliao Basin, China, as a natural analogue site for Fe migration (bleaching) and mineralization (formation of iron concretions) caused by reducing CO2‐bearing fluids that leak along fractures after carbon capture, utilization, and storage. We also examined the origin of fracture‐filling calcite veins, the properties of self‐sealing fluids, the influence of fluids on the compositions of mudstone and established a bleaching model for the study area. Our results show that iron concretions are the oxidative products of precursor minerals (pyrite and siderite) during uplift and are linked to H2S and CO2 present in early stage fluids. The precipitation of calcite veins is the result of CO2 degassing and is related to CO2, CH4, and minor heavy hydrocarbons in the main bleaching fluids. In our model, fluids preferentially enter high‐permeability fracture systems and result in the bleaching of surrounding rocks and precipitation of calcite veins. The infilling of calcite veins significantly decreases the permeability of fractures and forces the fluids to slowly enter and bleach the mudstone rocks. The Fe2+ released during bleaching migrates to elsewhere with the solutions or is reprecipitated in the calcite veins and iron concretions. The formation of calcite veins reduces the fracture space and effectively prevents fluid flow. The fluids have an insignificant effect on minerals within the mudstone. In terms of the chemistry of the mudstone, only the contents of Fe2O3, U, and Mo change significantly, with the content of U increasing in the mudstone and the contents of Fe2O3 and Mo decreasing during bleaching.  相似文献   

4.
T. K. KYSER 《Geofluids》2007,7(2):238-257
Sedimentary basins are the largest structures on the surface of our planet and the most significant sources of energy‐related commodities. With time, sedimentary successions in basins normally are subjected to increasingly intense diagenesis that results in differential evolution of basin hydrology. This hydrologic structure is in turn vitally important in determining how and where deposition of metals may occur. Fluids in all basins originate and flow as a result of sedimentological and tectonic events, so that fluid histories should reflect the control of both lithology and tectonism on ore deposition. Sandstone lithologies, in particular, reflect fluid‐flow events because they are normally the major aquifers in basins. However, early cementation results in occlusion of primary permeability in some facies (diagenetic aquitards) whereas in others, permeability develops due to the dissolution of unstable grains (diagenetic aquifers). Particularly for ore deposits in Precambrian basins, identification of paleohydrologic systems during basin evolution requires the integration of data derived from tectonics, sedimentology, stratigraphy, diagenesis, geochemistry and geology. Assessment of all these data is a prerequisite for the ‘holistic basin analysis’ needed to guide the search for basin‐hosted ores. Recent results from the Paleoproterozoic Mt Isa and McArthur basins in northern Australia serve as a template for exploring for mineral deposits in basins. Basinal fluids were saline, 200–300°C and evolved primarily from meteoric water in the Mt Isa Basin and from seawater in the McArthur Basin during burial to depths of 4–12 km. The δDfluid and δ18Ofluid values in these brines were isotopically identical to those in the Zn‐Pb, Cu and U deposits. Geochemical changes of various lithologies during alteration support detrital minerals as the major source of the U, and volcanic units proximal to diagenetic aquifers as a source for the transition metals. Ages of diagenetic phases extracted from aquifer lithologies reveal that fluid migration from the diagenetic aquifers effectively covers the period of formation for U, Zn‐Pb and Cu mineralization, and that the deposits formed in response to tectonic events reflected in the apparent polar wandering path for the area. Sequence stratigraphic analysis and models of fluid flow also indicate that basinal reservoirs were likely sources for the mineralizing fluids. Thus, diagenetic aquifer lithologies were being drained of fluids at the same time as the deposits were forming from fluids that were chemically and isotopically similar, linking diagenesis and fluid events within the basin to the formation of the deposits.  相似文献   

5.
S. L. POTTER  M. A. CHAN 《Geofluids》2011,11(2):184-198
The Jurassic Navajo Sandstone of Grand Staircase Escalante National Monument (GSENM), Utah, exhibits a broad range of iron oxide/oxyhydroxide concretionary geometries that record a complex paragenetic history of the reservoir. The concretionary geometries are as follows: (i) common macroconcretions (>5 mm in diameter), (ii) ubiquitous microconcretions (<5 mm in diameter), (iii) localized iron oxide/oxyhydroxide‐lined northeast‐striking joints, and (iv) loopy asymmetrical mineralization and banded precipitation patterns (Liesegang bands) associated with the joints. Spheroidal concretion geometries typically indicate diffusive mass transfer, whereas asymmetrical mineralization represents advective directional flow. Liesegang bands parallel to asymmetrical mineralization denote a diffusive mass transfer component perpendicular to the principal flow direction. Careful study of concretionary geometries and their cross‐cutting relationships establishes a relative timing of precipitation and mobilization events. Macroconcretions formed post‐Laramide (<55 Ma), prior to and independent of the Miocene joints. The joints provided conduits for later oxidizing fluids that precipitated iron oxide/oxyhydroxide lining on the joint faces. Advective mass transfer overprinted the area with preferentially cemented flow lines (asymmetrical mineralization) less than 10 Ma, coincident with development of a hydraulic low to the southeast of the region (Colorado River downcutting). Certain trace elements are genetically tied to concretion formation, and evaluation of trace elements establishes precursor mineral phases. Enriched uranium concentrations in concretions (relative to the host rock) and low/undetectable sulfur concentrations in both host rock and concretions suggest that iron oxyhydroxide was a primary precipitate rather than a reduced iron mineral (i.e., pyrite or siderite) that later oxidized. Enrichment of Ni and As in concretions functions as fingerprints for diagenetic concretion formation when determining genesis of ambiguous iron oxide/oxyhydroxide spherules such as the remotely sensed ‘blueberries’ on Mars. Similarities between Mars and Utah spherules such as geometry, in situ spacing and volumetric density suggest that Mars spherules precipitated via a geochemically self‐organized nucleation pattern in diffusive chemical reaction fronts.  相似文献   

6.
The Upper Triassic Mercia Mudstone is the caprock to potential carbon capture and storage (CCS) sites in porous and permeable Lower Triassic Sherwood Sandstone reservoirs and aquifers in the UK (primarily offshore). This study presents direct measurements of vertical (kv) and horizontal (kh) permeability of core samples from the Mercia Mudstone across a range of effective stress conditions to test their caprock quality and to assess how they will respond to changing effective stress conditions that may occur during CO2 injection and storage. The Mercia samples analysed were either clay‐rich (muddy) siltstones or relatively clean siltstones cemented by carbonate and gypsum. Porosity is fairly uniform (between 7.4 and 10.7%). Porosity is low either due to abundant depositional illite or abundant diagenetic carbonate and gypsum cements. Permeability values are as low as 10?20 m2 (10nD), and therefore, the Mercia has high sealing capacity. These rocks have similar horizontal and vertical permeabilities with the highest kh/kv ratio of 2.03 but an upscaled kh/kv ratio is 39, using the arithmetic mean of kh and the harmonic mean of kv. Permeability is inversely related to the illite clay content; the most clay‐rich (illite‐rich) samples represent very good caprock quality; the cleaner Mercia Mudstone samples, with pore‐filling carbonate and gypsum cements, represent fair to good caprock quality. Pressure sensitivity of permeability increases with increasing clay mineral content. As pore pressure increases during CO2 injection, the permeability of the most clay‐rich rocks will increase more than carbonate‐ and gypsum‐rich rocks, thus decreasing permeability heterogeneity. The best quality Mercia Mudstone caprock is probably not geochemically sensitive to CO2 injection as illite, the cause of the lowest permeability, is relatively stable in the presence of CO2–water mixtures.  相似文献   

7.
Petrography, geochemistry (stable and radiogenic isotopes), and fluid inclusion microthermometry of matrix dolomite, fracture‐filling calcite, and saddle dolomite in Ordovician to Devonian carbonates from southwestern Ontario, Canada, provide useful insights into fluid flow evolution during diagenesis. The calculated δ18Ofluid, ΣREE, and REESN patterns of matrix and saddle dolomite suggest diverse fluids were involved in dolomitization and/or recrystallization of dolomite. The 87Sr/86Sr ratios of dolomite of each succession vary from values in the range of coeval seawater to values more radiogenic than corresponding seawater, which indicate diagenetic fluids were influenced by significant water/rock interaction. High salinities (22.4–26.3 wt. % NaCl + CaCl2) of Silurian and Ordovician dolomite–hosted fluid inclusions indicate involvement of saline waters from dissolution of Silurian evaporites. High fluid inclusion homogenization temperatures (>100°C) in all samples from Devonian to Ordovician show temperatures higher than maximum burial (60–90°C) of their host strata and suggest involvement of hydrothermal fluids in precipitation and/or recrystallization of dolomite. A thermal anomaly over the mid‐continent rift during Devonian to Mississippian time likely was the source of excess heat in the basin. Thermal buoyancy resulting from this anomaly was the driving force for migration of hydrothermal fluids through regional aquifers from the center of the Michigan Basin toward its margin. The decreasing trend of homogenization temperatures from the basin center toward its margin further supports the interpreted migration of hydrothermal fluids from the basin center toward its margin. Hydrocarbon‐bearing fluid inclusions in late‐stage Devonian to Ordovician calcite cements with high homogenization temperatures (>80°C) and their 13C‐depleted values (approaching ?32‰ PDB) indicate the close relationship between hydrothermal fluids and hydrocarbon migration.  相似文献   

8.
Structure‐ and tectonic‐related gas migration into Ordovician sandstone reservoirs and its impact on diagenesis history were reconstructed in two gas fields in the Sbaa Basin, in SW Algeria. This was accomplished by petrographical observations, fluid inclusion microthermometry and stable isotope geochemistry on quartz, dickite and carbonate cements and veins. Two successive phases of quartz cementation (CQ1 and CQ2) occurred in the reservoirs. Two phase aqueous inclusions show an increase in temperatures and salinities from the first CQ1 diagenetic phase toward CQ2 in both fields. Microthermometric data on gas inclusions in quartz veins reveal the presence of an average of 92 ± 5 mole% of CH4 considering a CH4‐CO2 system, which is similar to the present‐day gas composition in the reservoirs. The presence of primary methane inclusions in early quartz overgrowths and in quartz and calcite veins suggests that hydrocarbon migration into the reservoir occurred synchronically with early quartz cementation in the sandstones located near the contact with the Silurian gas source rock at 100–140°C during the Late Carboniferous period and the late Hercynian episode fracturing at temperatures between 117 and 185°C, which increased in the NW‐direction of the basin. During the fracture filling, three main types of fluids were identified with different salinities and formation temperatures. A supplementary phase of higher fluid temperature (up to 226°C) recorded in late quartz, and calcite veins is related to a Jurassic thermal event. The occurrence of dickite cements close to the Silurian base near the main fault areas in both fields is mainly correlated with the sandstones where the early gas was charged. It implies that dickite precipitation is related to acidic influx. Late carbonate cements and veins (calcite – siderite – ankerite and strontianite) occurred at the same depths resulting from the same groundwater precipitation. The absence of methane inclusions in calcite cements result from methane flushing by saline waters.  相似文献   

9.
Most researchers in the Proterozoic eastern Mt Isa Block, NW Queensland, Australia, favour magmatic fluid and salt sources for sodic‐(calcic) alteration and iron oxide–copper–gold mineralization. Here we compare spatial, mineralogic and stable isotope data from regional alteration assemblages with magmatic and magmatic‐hydrothermal interface rocks in order to track chemical and isotopic variations in fluid composition away from inferred fluid sources. Tightly clustered δ18O values for magnetite, quartz, feldspar and actinolite for igneous‐hosted samples reflect high temperature equilibration in the magmatic‐hydrothermal environment. In contrast, these minerals record predominantly higher δ18O values in regional alteration and Cu–Au mineralization. This dichotomy reflects partial equilibration with isotopically heavier wallrocks and slightly lower temperatures. Increases in Si concentrations of metasomatic amphiboles relative to igneous amphiboles in part reflect cooling of metasomatic fluids away from igneous rocks. Variations in XMg for metasomatic amphiboles indicate local wallrock controls on amphibole chemistry, while variations in XCl/XOH ratios for amphiboles (at constant XMg) indicate variable aH2O/aHCl ratios for metasomatic fluids. Biotite geochemistry also reflects cooling and both increases and decreases in aH2O/aHCl for fluids away from plutonic rocks. Decreased aH2O/aHCl ratios for metasomatic fluids reflect in part scavenging of chlorine out of meta‐evaporite sequences, although this process requires already saline fluids. Local increases in aH2O/aHCl ratios, as well as local decreases in δ18O values for some minerals (most notably haematite and epithermal‐textured quartz), may indicate ingress of low salinity, low δ18O fluids of possible meteoric origin late in the hydrothermal history of the region. Taken together, our observations are most consistent with predominantly magmatic sources for metasomatic fluids in the eastern Mt Isa Block, but record chemical and isotopic variations along fluid flow paths that may be important in explaining some of the diversity in alteration and mineralization styles in the district.  相似文献   

10.
P. W. Cromie  Khin Zaw 《Geofluids》2003,3(2):133-143
Carlin‐type gold deposits in southern China are present in Palaeozoic to Mesozoic siliciclastic and carbonate rocks. The border region of Yunnan, Guizhou and Guangxi Provinces contains gold deposits on the south‐western margin of the Pre‐Cambrian South China Craton in south‐eastern Yunnan Province. The Fu Ning gold deposits host epigenetic, micron‐sized disseminated gold in: (i) Middle Devonian (D1p) black carbonaceous mudstone at the Kuzhubao gold deposit and (ii) fault breccia zones at the contact between Triassic gabbro (β ) and the Devonian mudstone (D1p) at the Bashishan gold deposit. The deposits are associated with zones of intense deformation with enhanced permeability and porosity that focused hydrothermal fluid flow, especially where low‐angle N‐S striking thrust faults are cut by NW striking strike‐slip and/or NE striking normal faults. Major sulphide ore minerals in the Fu Ning gold deposits are pyrite, arsenopyrite, arsenic‐rich pyrite, stibnite and minor iron‐poor sphalerite. Gangue minerals are quartz, sericite, calcite, ankerite and chlorite. Hypogene ore grades range from 1 to 7 g t?1 Au and up to 18 g t?1 Au at the Kuzhubao gold deposit and are generally less than 3 g t?1 Au at the Bashishan gold deposit. Sub‐microscopic gold mineralization is associated with finely disseminated arsenic‐rich pyrite in the Stage III mineral assemblage. Two types of primary fluid inclusions have been recorded: Type I liquid–vapour inclusions with moderate‐to‐high liquid/vapour ratios, and Type II inclusions containing moderate liquid/vapour ratios with CO2 as determined from laser Raman analysis. Temperature of homogenization (Th) data collected from these primary fluid inclusions in gold‐ore Stage III quartz ranged from 180 to 275°C at the Kuzhubao gold deposit and 210 to 330°C at the Bashishan gold deposit. Salinity results indicate that there were possibly two fluids present during gold deposition, including: (i) an early fluid with 0.8–6.5 wt.% NaCl equivalent, similar to salinity in shear‐zone‐hosted gold deposits with metamorphic derived fluids; and (ii) a late fluid with 11.8–13.4 wt.% NaCl equivalent, indicating possible derivation from connate waters and/or brine sources. CO2 and trace CH4 were only detected by laser Raman spectrometry in gold‐ore‐stage primary fluid inclusions. Results of sulphur isotope studies showed that δ34S values for pyrite and arsenopyrite associated with gold‐ore mineralization during Stage III at the Kuzhubao and Bashishan gold deposits are isotopically similar and moderately heavy with a range from +9 to +15 per mil, and also fall into the range of δ34S values reported for Carlin‐type gold deposits. Sulphur isotopes suggest that the Fu Ning gold deposits were formed from connate waters and/or basinal brines. Fluid geochemistry data from the Fu Ning gold deposits suggest a Carlin‐type genetic model, involving fluid mixing between: (i) deep CO2‐rich metamorphic fluids, (ii) moderately saline, reduced connate waters and/or basinal brines; and (iii) evolved meteoric waters.  相似文献   

11.
The Dongsheng uranium deposit, the largest in situ leach uranium mine in the Ordos Basin, geometrically forms a roll‐front type deposit that is hosted in the Middle Jurassic Zhiluo Formation. The genesis of the mineralization, however, has long been a topic of great debate. Regional faults, epigenetic alterations in surface outcrops, natural oil seeps, and experimental findings support a reducing microenvironment during ore genesis. The bulk of the mineralization is coffinite. Based on thin‐section petrography, some of the coffinite is intimately intergrown with authigenic pyrite (ore‐stage pyrite) and is commonly juxtaposed with some late diagenetic sparry calcite (ore‐stage calcite) in primary pores, suggesting simultaneous precipitation. Measured homogenization temperatures of greater than 100°C from fluid inclusions indicate circulation of low‐temperature hydrothermal fluids in the ore zone. The carbon isotopic compositions of late calcite cement (δ13CVPDB = ?31.0 to ?1.4‰) suggest that they were partly derived from sedimentary organic carbon, possibly from deep‐seated petroleum fluids emanating from nearby faults. Hydrogen and oxygen isotope data from kaolinite cement (δD = ?133 to ?116‰ and δ18OSMOW = 12.6–13.8‰) indicate that the mineralizing fluids differed from magmatic and metamorphic fluids and were more depleted in D (2H) than modern regional meteoric waters. Such a strongly negative hydrogen isotopic signature suggests that there has been selective modification of δD by CH4±H2S±H2 fluids. Ore‐stage pyrite lies within a very wide range of δ34S (?39.2 to 26.9‰), suggesting that the pyrite has a complex origin and that bacterially mediated sulfate reduction cannot be precluded. Hydrocarbon migration and its role in uranium reduction and precipitation have here been unequivocally defined. Thus, a unifying model for uranium mineralization can be established: Early coupled bacterial uranium mineralization and hydrocarbon oxidation were followed by later recrystallization of ore phases in association with low‐temperature hydrothermal solutions under hydrocarbon‐induced reducing conditions.  相似文献   

12.
Abundant illite precipitation in Proterozoic rocks from Northern Lawn Hill Platform, Mt Isa Basin, Australia, occurred in organic matter‐rich black shales rather than in sandstones, siltstones and organic matter‐poor shales. Sandstones and siltstones acted as impermeable rocks, as early diagenetic quartz and carbonate minerals reduced the porosity–permeability. Scanning and transmission electron microscopy (SEM and TEM) studies indicate a relation between creation of microporosity–permeability and organic matter alteration, suitable for subsequent mineral precipitation. K–Ar data indicate that organic matter alteration and the subsequent illite precipitation within the organic matter occurred during the regional hydrothermal event at 1172 ± 50 (2σ) Ma. Hot circulating fluids are considered to be responsible for organic matter alteration, migration and removal of volatile hydrocarbon, and consequently porosity–permeability creation. Those rocks lacking sufficient porosity–permeability, such as sandstones, siltstones and organic matter poor shales, may not have been affected by fluid movement. In hydrothermal systems, shales and mudstones may not be impermeable as usually assumed because of hydrocarbons being rapidly removed by fluid, even with relatively low total organic carbon.  相似文献   

13.
Boron isotope ratios of reservoir minerals and fluids can be a useful geothermometer and monitor of fluid–rock interactions. In Cold Lake oil sands of northern Alberta, there is a large variation in δ11B of the produced waters generated during steam injection and recovery of oil and water. The higher temperature waters (~ 200 °C) have isotopically light δ11B values (+ 3‰ to + 14‰) and high B contents (~150 p.p.m.). It is inferred that the range of δ11B values of the hydrothermal fluids results from reaction with the reservoir rock, and is a function of the temperature of the fluid–rock interaction. The distinct B geochemistry of the produced waters can be used to show that there is no detectable mixing of the oil recovery waters with the regional formation waters or shallow groundwater aquifers containing potable water. Examination of B isotope ratios of reservoir minerals, before and after steam injection, allows the evaluation of sources of B in the reservoir. The only significant phase containing B is pumice. It shows generally positive δ11B values before steam injection and negative values after steam, with δ11B as low as ? 28‰. Other possibly reactive phases include clay minerals and organic matter, but their abundance is not great enough to impact on the isotopic composition of the produced waters. This information makes it possible to evaluate the boron isotope fractionation equation derived from experimental data ( Williams LB (2000) Boron isotope geochemistry during burial diagenesis. PhD Dissertation. The University of Calgary, Alberta, Canada; Williams LB, Hervig RL, Holloway JR, Hutcheon I (2001a) Boron isotope geochemistry during diagenesis: Part 1. Experimental determination of fractionation during illitization of smectite. Geochimica et Cosmochimica Acta, in press). The results show that the fractionation curve predicts the difference between δ11B of the pumice and hydrothermal fluids in the Cold Lake reservoir. This not only indicates that the reservoir fluids have approached boron isotope equilibrium with the reservoir rock, but also shows that B isotopes provide a useful geothermometer for hydrothermally stimulated oil reservoirs.  相似文献   

14.
Unusual cone‐shaped iron oxide concretions occur in the Late Triassic, lower fluvial sandstone member of the Trujillo Formation at Palo Duro Canyon in the Texas panhandle. In situ concretions are significant because they record both historical information about past processes that occurred within the geologic unit and present‐day information about the ability of the unit to conduct fluids. The dominant orientation of the concretions is cone‐apex up, body radiating down and out, with long axis perpendicular to bedding. Concretion morphologies are associated with the sedimentary texture and primary bedding structure of the host rock and the corresponding hydrologic regime (i.e. advection versus dispersion for iron‐transport behavior). Three lithofacies in the lower Trujillo member exhibit different cone forms. Field observations of cone orientation and morphology suggest vadose conditions for diagenetic precipitation of iron oxide cements, with timing potentially represented by the major pre‐Miocene unconformity.  相似文献   

15.
D. Zhu  Q. Meng  Z. Jin  W. Hu 《Geofluids》2015,15(4):527-545
Well TS1 reveals many uncemented pores and vugs at depths of more than 8000 m in a deep Cambrian dolomite reservoir in the Tarim Basin, northwestern China. The fluid environment and mechanism required for the preservation of reservoir spaces have yet not been well constrained. Carbon, oxygen, and strontium isotope compositions and fluid inclusion data suggest two types of fluids, meteoric water and hydrothermal fluid, affecting the Lower Paleozoic carbonate reservoirs in the Tarim Basin. Based on simulation using a thermodynamic model for H2O‐CO2‐NaCl‐CaCO3 system, meteoric water has the ability to continuously dissolve carbonate minerals during downward migration from the surface to deep strata until it reaches a transition depth, below which it will begin to precipitate carbonate minerals to fill preexisting pore spaces. In contrast, hydrothermal fluid has the ability to dissolve carbonate in deep strata and precipitate carbonate in shallow strata during upward migration. Based on the dissolution–precipitation characteristics of the two types of fluids, the ideal fluid environment for the preservation of preexisting reservoir spaces occurs when carbonate reservoir is neither in the CaCO3 precipitation domain of meteoric water nor in the CaCO3 precipitation domain of hydrothermal fluid. Taking the Lower Paleozoic carbonate reservoirs in the north uplift area as an example, the spaces in the deep Cambrian dolomite reservoir near well TS1 were seldom filled because thick Ordovician deposits blocked meteoric water from migrating downward into the Cambrian dolomite reservoir and because the Cambrian dolomite reservoir has been in the domain of hydrothermal dissolution since the Permian. The deep carbonate layers in basins elsewhere with a similar fluid environment may have high uncemented porosity and consequently have good hydrocarbon exploration potential.  相似文献   

16.
The source and transport regions of fluidized (transported) breccias outcrop in the Cloncurry Fe‐oxide–Cu–Au district. Discordant dykes and pipes with rounded clasts of metasedimentary calc–silicate rocks and minor felsic and mafic intrusions extend several kilometres upwards and outwards from the contact aureole of the 1530 Ma Williams Batholith into overlying schists and amphibolites. We used analytical equations for particle transport to estimate clast velocities (≥20 m sec?1), approaching volcanic ejecta rates. An abrupt release of overpressured magmatic‐hydrothermal fluid is suggested by the localization of the base of the breccias in intensely veined contact aureoles (at around 10 km, constrained by mineral equilibria), incorporation of juvenile magmatic clasts, the scale and discordancy of the bodies, and the wide range of pressure variation (up to 150 MPa) inferred from CO2 fluid inclusion densities and related decrepitation textures. The abundance of clasts derived from depth, rather than from the adjacent wallrocks, suggests that the pressure in the pipes was sufficient to restrict the inwards spalling of fragments from breccia walls; that is, the breccias were explosive rather than implosive, and some may have vented to the surface. At these depths, such extreme behaviour may have been achieved by release of dissolved fluids from crystallizing magma, in combination with a strongly fractured and fluid‐laden carapace, sitting under a strong, low permeability barrier. The relationship of these breccias to the Ernest Henry iron‐oxide–Cu–Au deposit suggests they may have been sources of fluids or mechanical energy for ore genesis, or alternately provided permeable pathways for later ore fluids.  相似文献   

17.
The Jian copper deposit, located on the eastern edge of the Sanandaj–Sirjan metamorphic zone, southwest of Iran, is contained within the Surian Permo‐Triassic volcano‐sedimentary complex. Retrograde metamorphism resulted in three stages of mineralization (quartz ± sulfide veins) during exhumation of the Surian metamorphic complex (Middle Jurassic time; 159–167 Ma), and after the peak of the metamorphism (Middle to Late Triassic time; approximately 187 Ma). The early stage of mineralization (stage 1) is related to a homogeneous H2O–CO2 (XCO2 > 0.1) fluid characterized by moderate salinity (<10 wt.% NaCl equivalent) at high temperature and pressure (>370°C, >3 kbar). Early quartz was followed by small amounts of disseminated fine‐grained pyrite and chalcopyrite. Most of the main‐ore‐stage (stage 2) minerals, including chalcopyrite, pyrite and minor sphalerite, pyrrhotite, and galena, precipitated from an aqueous‐carbonic fluid (8–18 wt.% NaCl equivalent) at temperatures ranging between 241 and 388°C during fluid unmixing process (CO2 effervescence). Fluid unmixing in the primary carbonaceous fluid at pressures of 1.5–3 kbar produced a high XCO2 (>0.05) and a low XCO2 (<0.01) aqueous fluid in ore‐bearing quartz veins. Oxygen and hydrogen isotope compositions suggest mineralization by fluids derived from metamorphic dehydration (δ18Ofluid = +7.6 to +10.7‰ and δD = ?33.1 to ?38.5‰) during stage 2. The late stage (stage 3) is related to a distinct low salinity (1.5–8 wt.% NaCl equivalent) and temperatures of (120–230°C) aqueous fluid at pressures below 1.5 kbar and the deposition of post‐ore barren quartz veins. These fluids probably derived from meteoric waters, which circulated through the metamorphic pile at sufficiently high temperatures and acquire the characteristics of metamorphic fluids (δ18Ofluid = +4.7 to +5.1‰ and δD = ?52.3 to ?53.9‰) during waning stages of the postearly Cimmerian orogeny in Surian complex. The sulfide‐bearing quartz veins are interpreted as a small‐scale example of redistribution of mineral deposits by metamorphic fluids. This study suggests that mineralization at the Jian deposit is metamorphogenic in style, probably related to a deep‐seated mesothermal system.  相似文献   

18.
The Moab Anticline, east‐central Utah, is an exhumed hydrocarbon palaeo‐reservoir which was supplied by hydrocarbons that migrated from the Moab Fault up‐dip towards the crest of the structure beneath the regional seal of the Tidwell mudstone. Iron oxide reduction in porous, high permeability aeolian sandstones records the secondary migration of hydrocarbons, filling of traps against small sealing faults and spill pathways through the Middle Jurassic Entrada Sandstone. Hydrocarbons entered the Entrada Sandstone carrier system from bends and other leak points on the Moab Fault producing discrete zones of reduction that extend for up to 400 m from these leak points. They then migrated in focused stringers, 2–5 m in height, to produce accumulations on the crest of the anticline. Normal faults on the anticline were transient permeability barriers to hydrocarbon migration producing a series of small compartmentalized accumulations. Exsolution of CO2 as local fault seals were breached resulted in calcite cementation on the up‐dip side of faults. Field observations on the distribution of iron oxide reduction and calcite cements within the anticline indicate that the advancing reduction fronts were affected neither by individual slip bands in damage zones around faults nor by small faults with sand: sand juxtapositions. Faults with larger throws produced either sand: mudstone juxtapositions or sand: sand contacts and fault zones with shale smears. Shale‐smeared fault zones provided seals to the reducing fluid which filled the structural traps to spill points.  相似文献   

19.
X. Zhou  T. J. Burbey 《Geofluids》2014,14(2):174-188
The initiation of hydraulic fractures during fluid injection in deep formations can be either engineered or induced unintentionally. Upon injection of CO2, the pore fluids in deep formations can be changed from oil/saline water to CO2 or CO2 dominated. The type of fluid is important not only because the fluid must fracture the rock, but also because rocks saturated with different pore fluids behave differently. We investigated the influence of fluid properties on fracture propagation behavior by using the cohesive zone model in conjunction with a poroelasticity model. Simulation results indicate that the pore pressure fields are very different for different pore fluids even when the initial field conditions and injection schemes (rate and time) are kept the same. Low viscosity fluids with properties of supercritical CO2 will create relatively thin and much shorter fractures in comparison with fluids exhibiting properties of water under similar injection schemes. Two significant times are recognized during fracture propagation: the time at which a crack ceases opening and the later time point at which a crack ceases propagating. These times are very different for different fluids. Both fluid compressibility and viscosity influence fracture propagation, with viscosity being the more important property. Viscosity can greatly affect hydraulic conductivity and the leak‐off coefficient. This analysis assumes the in‐situ pore fluid and injected fluid are the same and the pore space is 100% saturated by that fluid at the beginning of the simulation.  相似文献   

20.
This article is concerned with chemical reactions that occur between two interacting parallel fluid flows using mixing in vertical faults as an example. Mineral precipitation associated with fluid flow in permeable fault zones results in mineralization and chemical reaction (alteration) patterns, which in turn are strongly dependent on interactions between solute advection (controlled by fluid flow rates), solute diffusion/dispersion and chemical kinetics. These interactions can be understood by simultaneously considering two dimensionless numbers, the Damköhler number and the Z‐number. The Damköhler number expresses the interaction between solute advection (flow rate) and chemical kinetics, while the Z‐number expresses the interaction between solute diffusion/dispersion and chemical kinetics. Based on the Damköhler and Z‐numbers, two chemical equilibrium length‐scales are defined, dominated by either solute advection or by solute diffusion/dispersion. For a permeable vertical fault zone and for a given solute diffusion/dispersion coefficient, there exist three possible types of chemical reaction patterns, depending on both the flow rate and the chemical reaction rate. These three types are: (i) those dominated by solute diffusion and dispersion resulting in precipitation at the lower tip of a vertical fault and as a thin sliver within the fault, (ii) those dominated by solute advection resulting in precipitation at or above the upper tip of the fault, and (iii) those in which advection and diffusion/dispersion play similar roles resulting in wide mineralization within the fault. Theoretical analysis indicates that there exists both an optimal flow rate and an optimal chemical reaction rate, such that chemical equilibrium following focusing and mixing of two fluids may be attained within the fault zone (i.e. type 3). However, for rapid and parallel flows, such as those resulting from a lithostatic pressure gradient, it is difficult for a chemical reaction to reach equilibrium within the fault zone, if the two fluids are not well mixed before entering the fault zone. Numerical examples are given to illustrate the three possible types of chemical reaction patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号