首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Results of a sodium vapour release experiment carried out from SHAR (India), an equatorial rocket launching station, immediately after (⩽ 2 h) a storm sudden commencement (SSC) during the initial phase of a magnetic storm, followed by electron density measurements are presented. Many of the relevant atmospheric parameters, namely, neutral winds and their altitude variation, the magnitude of the shears in them, the neutral temperature with altitude by spectroscopic methods, diffusion measurements on the released trail, clues on the turbopause level and the electron densities including the structures (irregularities) in them were obtained. The results of the temperature measurements carried out independently on the sodium trail by means of a ground-based Fabry-Perot spectrometer, operating on the sodium D 1 line, resonantly scattered by the trail have already been reported by us (Ranjan Guptaet al., 1986). In this paper the effects of the excess temperature reported earlier and the rest of the measured parameters on the electron density profiles are evaluated using models and compared with the measurements.The formation of sharp layers of ionization have been explained on the basis of the electro-dynamical processes associated with the wind shears at a location, close to the edge of the equatorial electrojet belt. The significance of the changes in the neutral composition due to the enhanced neutral temperature and the low turbopause level, in increasing the base-level plasma densities by a factor of 3–5 are demonstrated and the possible role of plasma dynamics discussed.  相似文献   

2.
Electron density profiles derived from rocket-borne measurements are presented. These data were obtained at two different sites in northern Scandinavia under various degrees of geophysical disturbance. The observed electron density profiles are related to ionospheric absorption as observed with the dense riometer network in that area.  相似文献   

3.
Sodium lidar measurements have been performed during three summer seasons at a polar latitude (69°N), yielding profiles of sodium number density and temperature of the 85–100 km altitude region. Density measurements were performed during the months of June–August; temperature measurements only were made in August. The sodium layer was found to be both significantly weaker and more variable in summer than in winter. Measurements in summer 1987 yielded an average maximum Na density of about 900 atoms per cm3. The average maximum Na density during summer 1986 and 1988 was near 2600 atoms per cm3. The observed Na column density in summer varied from 3.108 to 3.109 atoms per cm2. Temperature measurements were performed in August of 1986 and 1987. Mesopause temperatures of less than 125 K were observed in early August, rising rapidly throughout the month. The mean altitude of the mesopause was found to be about 87 km.  相似文献   

4.
Measurements of ion temperature, ion-neutral collision frequency and ion drift in the E-region from the period December 1984 to November 1985 are used to derive neutral temperatures, densities and meridional winds in the altitude intervals 92–120 km, 92–105 km and 92–120 km, respectively. Altitude profiles of temperature and density and their seasonal variations are compared with the CIRA 1972 and MSIS 1983 models and the effects of geomagnetic activity are demonstrated. Semi-diurnal tidal variations in all three parameters are derived and the comparison with lower latitude measurements is discussed.  相似文献   

5.
We analyze 375 h of Na Wind/Temperature lidar measurements of the mesopause region (≈ 80–105 km) Na density and temperature profiles on 57 nights distributed over 2 yr at Urbana, Illinois. These observations yield a high-resolution seasonal data set of gravity wave activity in the upper mesosphere. From this data, we present measurements of the Brunt-Väisälä period, the relative atmospheric density perturbations and their spectra, and the parameters of 143 quasi-monochromatic gravity waves. The direct measurement of the Brunt-Väisälä period allows accurate calculation of the horizontal velocity perturbations and vertical displacement perturbations from the density measurements. The horizontal velocity and vertical displacement vertical wave number spectrum magnitudes and indices show considerable seasonal and nightly variability. The gravity wave amplitudes, wavelengths, and observed periods exhibit systematic relationships similar to those found in previous studies, and are consistent with the MU radar measurements of intrinsic gravity wave parameters. Here, we present a detailed analysis of the observations in terms of Diffusive-Filtering Theory models of gravity wave propagation. The magnitudes of the vertical wave number spectrum, the form of the joint vertical wave number and frequency spectrum, and the systematic relationships between the monochromatic gravity wave parameters are consistent with the Diffusive-Filtering model. We compare these results with a variety of radar, lidar, and airglow observations from other sites. This observational study suggests that the complex nonlinear interactions of the gravity wave field may be modeled successfully as a diffusive damping process, where the effective diffusivity is a function of the total wave variance.  相似文献   

6.
A realistic model for the temperature variation along geomagnetic field lines is described. For high altitudes (>1500 km) the temperature is taken to increase as the nth power of radial distance (n−2), giving temperatures consistent with those measured in situ by high altitude satellites. For realistic temperatures at low altitude an extra term is included. The temperature gradient along the field line is then 0.9–1.6° km−1 during the day and 0.5–0.7° km−1 during the night at 1000 km, reducing to about half these values at 2000 km, for the latitude range 35–50°. This is consistent with calculations made from nearly simultaneous satellite measurements at 1000 and 2500 km. It is shown that assuming diffusive equilibrium, including the new temperature model, more realistic equatorial electron density profiles result than for isothermal field lines.The temperature gradient model is also purposely formulated to be of a form that enables the temperature modified geopotential height to be obtained without numerical integration. This renders the model particularly suitable for ray-tracing calculations. A ray-tracing model is developed and it is shown that unducted ray paths are significantly altered from the corresponding paths in an equivalent isothermal model; there is greater refraction and magnetospheric reflection takes place at lower altitudes. For summer day conditions, an inter-hemispheric unducted ray path becomes possible from 26° latitude that can reach the ground at the conjugate.  相似文献   

7.
We describe some of the highlights of the incoherent scatter observations made at Jicamarca in the 1960s. Some of the observations were then and are still now unique and worthy of further study. Of particular note are (1) a long series of electron density measurements extending to altitudes as high as 10,000 km on a few occasions, (2) density and temperature observations during a total solar eclipse, (3) temperature and composition measurements extending past the O+-H+ transition region, and (4) observations of the ion gyro resonance effect for protons.  相似文献   

8.
Data taken by EISCAT are presented as contours of electron density, ion and electron temperature and plasma velocity versus invariant latitude and local magnetic time.Three nights near midsummer were studied and in each case a trough in electron density occurred north of invariant latitude 64° shortly after local midnight (MLT 0200) and remained a prominent feature for about 3 h before moving poleward. The minimum in electron density was associated with a marked increase in ion temperature, but the electron temperature showed litttle change. In this respect the high latitude trough is clearly different from the mid-latitude trough.Full velocity measurements were not available for all three nights, but it seems that the appearance of the trough followed the start of a strong eastward plasma velocity combined with a strong upward velocity along the magnetic field line. The sudden change in plasma velocity causes frictional heating, which explains the increase in ion temperature. Upward plasma velocity is a major factor in the formation of the trough, with enhanced recombination making a smaller contribution.  相似文献   

9.
A rocket payload designed to measure mesospheric sodium, hydroxyl and oxygen nightglow emissions, in addition to electron density and temperature, was launched from the Alcantara Launch Center (2°S, 44°W), Brazil, at 23:52 LST on 31 May 1992. The height profiles of the atomic oxygen OI557.7 nm and molecular oxygen Atmospheric (0-0) band emissions showed maxima at 100±3 km and 98±3 km, respectively. The emission data are used to calculate the atomic oxygen concentration profiles. The results show the validity for the equatorial region of the empirical parameters proposed by McDade et al. (1986).  相似文献   

10.
The most dramatic demonstrations of solar activity are solar proton flares. One such very strong flare, accompanied by a solar proton event (SPE) and a large ground level enhancement of cosmic rays on Earth, was observed in October 1989. During this SPE, ion density and nitric oxide concentration profiles were measured by rockets launched from the Soviet research vessel ‘Akademik Shirshov’ in the southern part of the Indian Ocean. The rocket experiment yielded the first in-situ measurement of NO concentration increased by SPE. The NO concentrations estimated from ion-pair production rates due to measured fluxes of high energy particles agree fairly well with the observed NO concentrations in the stratopause region. The results of rocket measurements are compared with measurements of the radio wave absorption in the lower ionosphere performed at similar latitudes in central Europe. Model calculations of absorption show that while the night-time enhancement of absorption can be explained by increased electron density related to the measured increase of ion density as a consequence of enhanced penetration of high energy particles, the daytime increase of absorption needs to be explained mainly in terms of the observed increase of nitric oxide concentration.  相似文献   

11.
Simultaneous data on electron density, electron temperature and current density obtained from a rocket borne Langmuir probe, a glass-sealed Langmuir probe and a proton precession magnetometer flown from Thumba (geomag. lat. 0.99°S, geomag. long. 146.79°E, magnetic dip 0°47'S) have been used to calculate the Joule heating in order to assess whether it contributes significantly to the thermal imbalance in the E-region. It is envisaged that the changes in electron temperature are partially brought about by changes in collision frequency and the energy loss factor. It is found that the Joule heating alone is not sufficient to explain the observed differences in electron and neutral gas temperatures. The inclusion of photoelectron heating and adjustments of profiles of the collision frequency and the energy loss factor bring the computed temperature differences closer to the observed differences.  相似文献   

12.
On top of the 379 m high Ramnan mountain on the island of Andøya (69°30′N, 16°01′E) in Northern Norway, the ALOMAR (The Arctic Lidar Observatory for Middle Atmospheric Research) will soon be in operation. Through measurements of different atmospheric parameters, ALOMAR will provide information on the dynamics of the middle and upper atmosphere using ground-based instrumentation. Routine measurements, including ozone observations, can be carried out more efficiently than currently possible. The observatory is currently using three LIDAR instruments, one radar and several ground-based instruments to measure density, temperature, wind profiles and aerosol densities over a height range of approximately 10 to 100 km. ALOMAR will provide scientists worldwide with the opportunity for year-round, in-depth studies of the polar middle atmosphere, concentrating on physics, chemistry and meteorology. The observatory will offer unique research opportunities, and its activities can be correlated using the Andøya Rocket Range (ARR), who operate the facility, and with other important research facilities such as the EISCAT radar, and the University of Tromsø observatories which are located nearby. There are many opportunities for additional cooperative scientific experiments using ground-based measurements and instruments carried by aircraft, balloons and sounding rockets.  相似文献   

13.
Measurements of ionization sources, ionization profiles and minor atmospheric constituents were conducted during the 26 February 1979 solar eclipse above Red Lake, Canada. A model of the lower thermosphere has developed to describe the D- and E-regions of the ionosphere for this case with the model being guided by the measurements. During the eclipse a rather intense particle precipitation event was in progress. For this reason, an auroral deposition code was coupled to a chemical-kinetics code to calculate degraded primary and secondary electron fluxes, ionization rates, positive ion and electron densities. The model was calibrated with the experimental measurements of electron flux below 100 km and electron density between 70 and 150 km. This calculation not only satisfactorily described the ionization in the E-region but also the gross electron density characteristics of the D-region. Bursts in the observed electron flux were also simulated with the model to give electron density profiles that were remarkably consistent with small perturbations seen in the electron density measurements.  相似文献   

14.
F-region density depletions in the afternoon/evening sector of the auroral zone are studied with the EISCAT UHF radar. Four case studies are presented, in which data from three experiment modes are used. In each case the density depletion can be identified with the main ionospheric trough. For the two cases occurring in sunlit conditions the electron densities recovered significantly after the trough minimum. Tristatic ion velocity measurements show the development of poleward electric fields of typically 50–100 m Vm−1, which maximize exactly in the trough minimum. A special analysis technique for incoherent scatter measurements is introduced, based on the ion energy equation. By assuming that the ion temperature should obey this equation it is possible to fix this parameter in a second analysis and to allow the ion composition to be a free parameter. The results from two experiments with accurate velocity measurements indicate that the proportion of O+ near the F-region peak decreased from 100% in the undisturbed ionosphere to only 10% and 30%, respectively, in the density minimum of the trough. The loss of O+ is explained by the temperature dependence of recombination with nitrogen molecules. Temperatures derived from radar measurements are very sensitive to the assumed ion composition. For the above case of 10% O+ the deduced electron temperature in the trough was transformed from a local minimum of < 2000 K to a local maximum of 4000 K.  相似文献   

15.
The observed discrepancies between A1 absorption meaurements and numerical estimation of the same using IRI electron density profiles are attributed to the assumption made in the Sen-Wyleer generalized magneto-ionic theory that the momentum transfer collision frequency of electrons with neutrals is proportional to the square of the electron thermal speed. Based on Budden's (1985) suggestion that, in the lower thermosphere and mesosphere, the momentum transfer collision frequency is proportional to the electron thermal speed, a generalized magneto-ionic theory has been outlined. The new theory brings experimental measurements of A1 absorption closer to the theoretical deductions based on IRI-90 electron density profiles.  相似文献   

16.
Accurate measurement of the electron density profile and its variations is crucial to further progress in understanding the physics of the disturbed equatorial ionosphere. To accomplish this, a plasma frequency probe was included in the payload complement of two rockets flown during the CONDOR rocket campaign conducted from Peru in March 1983. In this paper we present density profiles of the disturbed equatorial ionosphere from a night-time flight in which spread-F conditions were present and from a day-time flight during strong electrojet conditions. Results from both flights are in excellent agreement with simultaneous radar data in that the regions of highly disturbed plasma coincide with the radar signatures. The spread-F rocket penetrated a topside depletion during both the upleg and downleg. The electrojet measurements showed a profile peaking at 1.3 × 105cm−3 at 106 km, with large scale fluctuations having amplitudes of roughly 10 % seen only on the upward gradient in electron density. This is in agreement with plasma instability theory. We further show that simultaneous measurements by fixed-bias Langmuir probes, when normalized at a single point to the altitude profile of electron density, are inadequate to correctly parameterize the observed enhancements and depletions.  相似文献   

17.
This paper discusses the results from four rocket experiments conducted from Thumba, India, during the Indian Middle Atmosphere programme (IMAP). These rockets carried instrumented Gerdien Condenser payloads to measure ion densities and their mobilities. In the first two flights only positive ion measurements were attempted while the other two measured both positive and negative ion values. The results show that the positive ion density profiles go through a minimum around 62 km, as expected from the ion production models for this region. The ion density distribution is a function of solar zenith angle. An asymmetry with respect to noon is seen in these measurements, which is not expected theoretically. The positive ion mobilities indicate the ions to be water clusters, of the type H+ (H2O)n with n = 2 or 3, similar to the earlier reported ones. The negative ion density profile exhibits a maximum around 85 km, which is not predicted by the currently available ion density models and theories of D-region ionisation processes. The negative ion mobility measurements show the ions to have a mass range of 30–60 amu, which is within the range of mass spectrometric measurements.  相似文献   

18.
In order to study the influence of altitude smearing on the determination of ionospheric parameters by incoherent scatter, we take advantage of the fact that EISCAT single pulse measurements in the F1-region have been made simultaneously with two different altitude resolutions. It is shown that the measured parameters can be very far from the real parameters, due to this altitude smearing. An attempt to deconvolve the profiles is made, which works well in the case of smooth power variations within the diffusive volume, but diverges in the case of strong structured power variations, such as those produced by energetic auroral particle precipitation into the upper atmosphere. In this last case it was, however, possible to deduce the real profile with quite good accuracy by a trial and error method. The geophysical consequences of the large discrepancy between measured and actual parameters (density and temperatures) are finally discussed.  相似文献   

19.
Two long-standing problems in the atmospheric sciences have been the correct modeling of the ion chemistry in the earth's atmosphere and the proper determination of the ion species and densities through in situ measurements. Comparison between experimental data and simulations of the data by computer modeling of atmospheric chemistry is a means of validating the model as well as indicating which processes are in need of further study. The DAIRCHEM computer code is used here to simulate data taken in the midlatitude D-region during quiet conditions. On the one hand, comparison between the total positive ion density profile derived from rocket measurements and the one computed by the code shows very good agreement in the 30–90 km range, with the exception that the simulated ion profile is somewhat smaller than the experimental one in the 60–75 km region. Such discrepancy is only partially explained by the inherent uncertainties in the NO density profile or the total ionization rate profile. On the other hand, comparison between the measured and the computed electron density profiles shows that the measured profile is consistently smaller than the computed profile in the 65–85 km range. We interpret this discrepancy as a deficiency in the modeling of the negative ion chemistry. Also, this deficiency is probably the main cause of the disparity between the total positive ion density profiles in the corresponding altitude range. It is felt that the positive ion chemistry of the D-region is reasonably well understood. However, the negative ion chemistry is in need of further study. Specifically, alternate electron attachment/detachment processes should be considered, as well as an as yet undetermined, possibly very massive, negative species which may affect the ion recombination rates.  相似文献   

20.
A brief outline is given of the experimental technique used during the Cold Arctic Mesopause Project to record the first D-region ion line spectra with the EISCAT incoherent scatter radar. The data analysis shows that echoes from mesospheric heights between about 70 km and 90 km can be detected during disturbed periods of enhanced electron density during particle precipitation events. Electron density profiles were determined which show a fairly high density, up to 5 × 1010 m−3 in the upper D-region. The measured meridional winds were lower than 10 m s−1. A fit of the measured height profile of spectral width to temperature and neutral density models yielded a measured temperature profile in good agreement with simultaneous rocket data. The mesopause temperature was determined to be as low as 130 K. This detailed analysis of the spectral width profile indicates that below about 77–80 km the ratio of negative ions to electrons exceeded unity. Finally, some discussions are added on the limitations and significance of these first mesosphere observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号