首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From April 1984 to April 1985 a microwave radiometer was operated at Bern (Switzerland, latitude 47°N) measuring the thermal emission of the rotational ozone transition at 142.2 GHz to determine stratospheric and mesospheric ozone abundances in the range ~25–~75 km altitude. From a total of 334 retrieved day-time profiles, monthly mean ozone partial pressures for Umkehr layers 6–10 were calculated. On this basis ozone variations compare favorably with Umkehr data from the nearby Arosa (Switzerland, 150 km east of Bern) station and with a monthly zonal mean model compiled from satellite data by Keating and Young. From the microwave data an annual mean ozone distribution was determined. The method retrieves somewhat larger ozone volume mixing ratios between 25 and 30 km altitude. For the rest of the measurement range of the sensor there is good agreement with 20 year annual mean ozone values from Arosa, with the Krueger and Minzner profile and with the respective annual mean data given by Keating and Young. The microwave ozone sensor can easily be adapted for operational use, where it can supplement and expand the measurement range of the traditional Umkehr network.  相似文献   

2.
In this paper, we describe a new Umkehr algorithm for the estimation of the vertical ozone profile from observations of the umkehr effect of Götz. The algorithm uses new ozone absorption coefficients, which result in a change in the scale of measurement, and their temperature dependence. Better a priori ozone profiles are possible because of the very large increase in the archive of ozone profile measurements. The characterization of the retrieved ozone profiles and the error analysis follow the recipe of Rodgers. The differences between the new algorithm and the old 1964 algorithm are discussed. For both algorithms, only the retrievals for layers 4–8 (1943 km) are suitable for use in ozone trend analysis. For these layers, the retrieval resolution is trivially improved over that in the 1964 algorithm. For other layers, the retrievals either respond mainly to real ozone changes in adjacent or distant layers, or are a function of low-amplitude changes over a very broad range of layers. The effect of atmospheric aerosol on the retrieved profiles has been determined, and found to be generally similar to the effect for the old algorithm, but differing in some details.  相似文献   

3.
Passive Microwave Remote Sensors (MRS) can provide information on the composition of the atmosphere by measuring the thermal radiation emitted from rotational transitions of atmospheric molecules Ozone profiles simultaneously obtained from an MRS and a Dobson instrument (‘Umkehr’ method) are compared over a time period of approximately four months. The microwave measurements yield ozone concentrations which are 20–30% higher than the ‘Umkehr’ values. A critical, though not well known, parameter for the microwave inversion procedure is the foreign gas pressure broadening parameter (C) for the observed 142GHz ozone resonance. Throughout the intercomparison we used a value of 3 MHz mb−1. There is recent theoretical and experimental indication that C is more likel y to be as low as 2.5 MHz mb−1. If we use this new value for C all microwave retrieved profiles decrease by 20–25%, thus leading to a far better agreement with the ‘Umkehr’ results. Our measurements therefore strongly support the proposed value of 2.5 MHz mb−1. A final answer on MRS ‘Umkehr’ correlation accuracy cannot be given. We feel that comparison on a day-to-day basis may be rather meaningless and monthly mean values should be used. On the other hand, there was relatively little change in these mean values during the intercomparison period The MRS showed its potential to retrieve ozone profiles also under adverse meteorological conditions, such as cloud cover or fog.  相似文献   

4.
High resolution incoherent-scatter observations of E-region thin (1–3 km) metallic ion layers are presented. Data were collected during three different periods from August 1990 to August 1991, in three different experimental modes. First, the antenna was directed vertically and the entire duty cycle was devoted to Barker coded multi-pulse [Zamlutti (1980) J. atmos. terr. Phys.42, 975–982] measurements to determine the densities and temperatures in the E-region with 300 m resolution. The second experiment measured the F-region electric field as well as the high resolution E-region densities. For the third experiment the antenna was scanned magnetic north-south while only the E-region densities were measured. The experiments were carried out on 16 different nights for a period of 4 h each night at a time near magnetic midnight. Thin ionization layers were observed on 12 of the 16 nights. The first experiment demonstrated that the thin layers are composed of a significant fraction of heavy metallic ions; assuming the layers are composed of a mixture of Fe+ and Mg+ a composition estimate of 63% Fe+ was obtained in one example. The second experiment investigated the relationship between the direction of the electric field and the presence of the thin layers. In these observations thin layers were only present when the electric field was pointed in the magnetic north-west or south-west quadrants, most frequently when the field was near magnetic west. Correlation between layer altitude and field direction was also observed, layers occurring at higher altitudes for fields directed in the north-west, and lower altitudes for fields directed to the south-west. The observations are compatible with the electric field mechanism for thin ionization layer formation. The scanning experiment showed that the layers were of a limited latitudinal extent, typically about 100 km up to a maximum of about 200 km.  相似文献   

5.
Fridman and Fridman [(1994) J. atmos. terr. Phys. 56, 115] suggested a method of reconstructing the horizontally-inhomogeneous ionospheric structure using vertical- and oblique-incidence backscatter sounding (OBS) ionograms measured at a single location. In the present paper this technique has been used to analyze experimental data and tested against independent vertical sounding (VS) measurements. By using the OBS and VS ionograms measured at Irkutsk as source data for the method we reconstructed ionization profiles over Tomsk (1050 km to the west of Irkutsk). We found that the reconstructed profiles are in reasonable agreement with the profiles obtained from VS measurements at Tomsk.  相似文献   

6.
The ozone depletion over the Antarctic region is now attributed to processes involving heterogeneous chemistry on polar stratospheric clouds. Similar mechanisms are probably working also in the Northern hemisphere high latitudes [Douglass and Stolarski (1989) Geophys. Res. Lett. 16, 131] and may be important in explaining the secular trend of ozone in the last twenty years above 50° North [Pitari and Visconti (1991) J. geophys. Res. 96, 10,931]. Hofmann and Solomon [(1989) J. geophys. Res. 94, 5029] have shown that the local observed decrease in the ozone amount following the eruption of El Chichón could be explained in terms of heterogeneous chemistry on the volcanic aerosol surface. In this paper we use a two dimensional model to study the effects on ozone introduced by the El Chichón aerosols through a perturbation in the radiation field; both the temperature and the photolysis rates are affected. We show that up to half of the observed decrease may be attributed to radiative effects at mid latitudes.  相似文献   

7.
An analysis is presented of the long-term mean pressure latitude seasonal distribution of tropospheric and lower stratospheric ozone for the four seasons covering, in part, over 20 years of ozonesonde data. The observed patterns show minimum ozone mixing ratios in the equatorial and tropical troposphere except in regions where net photochemical production is dominant. In the middle and upper troposphere, and low stratosphere to 50 mb, ozone increases from the tropics to subpolar latitudes of both hemispheres. In mid stratosphere, the ozone mixing ratio is a maximum over the tropics. The observed vertical ozone gradient is small in the troposphere but increases rapidly above the tropopause. The seasonal variation at a typical mid latitude station (Hohenpeissenberg) shows a summer maximum in the low to middle troposphere, shifting to a winter-spring maximum in the upper troposphere and lower stratosphere and spring -summer maximum at 10 mb. The amplitude of the annual variation increases from a minimum in the tropics to a maximum in polar regions. Also, the amplitude increases with height at all latitudes up to about 30 mb where the phase of the annual variation changes abruptly. The phase of the annual variation is during spring in the boundary layer, summer in mid troposphere, and spring in the upper troposphere and lower stratosphere. The annual long-term ozone trends are significantly positive at about + 1.2% yr in mid troposphere (500 mb) and significantly negative at about − 0.6% yr1 in the lower stratosphere(50mb)  相似文献   

8.
MF and HF conjugate ducting is often observed while satellite sounders are within equatorial bubbles. This paper examines two possible forms of this propagation. The first is guiding by the bubble itself, the second is ducting along irregularities, of small cross-section, embedded in the bubble. One bubble model, based on observations by Dyson and Benson [Geophys. Res. Lett. 9, 795 (1978)], gives some results at variance with observation. Nevertheless it is considered that slight changes to the model, such as asymmetries between the conjugate ionospheres, should remove the discrepancies. The results show that bubbles themselves will definitely produce conjugate ducting on occasions. The alternative explanation requires ducts of small cross-section, distributed throughout the bubble in order to produce conjugate ducting on successive ionograms. Good matches between calculated and observed echo traces for conjugate echoes were obtained using this model. It is likely that both forms of propagation occur.  相似文献   

9.
Monthly simulations of the solar semidiurnal tide in the 80–100 km height regime are presented. These calculations benefit from the recent heating rates provided by Groves G. V. (1982a,b) (J. atmos. terr. Phys. 44, 111; 44, 281), the zonally-averaged wind, temperature and pressure fields developed for the new COSPAR international reference atmosphere [Labitzke K., Barnett J. J. and Edwards B. (1985) Handbook for MAP 16, 318], and eddy diffusivities determined from gravity wave saturation climatologies and used by Garcia R. R. and Solomon S. (1985) (J. geophys. Res. 90, 3850) to simulate oxygen photochemistry and transport in the mesosphere and lower thermosphere. Some of the main characteristics of the observed semidiurnal tide at middle and high latitudes are reproduced in our simulations: larger amplitudes in winter months than in summer months, and the bi-modal behavior of the phase with summer-like and winter-like months separated by a quick transition around the two equinoxes. The phase transition is also more rapid in the spring, consistent with observations. The wavelengths are also longer in summer than in winter, at least below 95 km (whereas in July and August the simulations exhibit some discrepancies above this altitude), similar to the observational data. Semidiurnal amplitudes are generally smaller and the phases more seasonally symmetric at middle and low latitudes, as compared with the tidal structures above about 50° latitude. In addition, hemispheric differences in the mean zonal wind result in marked asymmetries in tidal behavior between the Arctic and Antarctic regions, and suggest that a comparative study of tide, gravity wave and mean flow interactions in the Arctic and Antarctic mesosphere and lower thermosphere would be fruitful.  相似文献   

10.
Measurements of ionospheric electron density vertical profiles, carried out at a magnetic equatorial station located at Fortaleza (4°S, 38°W; dip latitude 2°S) in Brazil, are analyzed and compared with low-latitude electron density profiles predicted by the International Reference Ionosphere (IRI) model. The analysis performed here covers periods of high (1979/1980) and low (1986) solar activities, considering data obtained under magnetically quiet conditions representative of the summer, winter and equinox seasons. Some discrepancies are found to exist between the observed and the IRI model-predicted ionospheric electron density profiles. For high solar activity conditions the most remarkable one is the observed fast upward motion of the F-layer just after sunset, not considered in the IRI model and which precedes the occurrence of nighttime ionospheric plasma irregularities. These discrepancies are attributed mainly to dynamical effects associated with the low latitude E × B electromagnetic plasma drifts and the thermospheric neutral winds, which are not satisfactorily reproduced either in the CCIR numerical maps or in the IRI profile shapes. In particular, the pre-reversal enhancement in the vertical E × B plasma drifts around sunset hours has a great influence on the nighttime spatial distribution of the low-latitude ionospheric plasma. Also, the dynamical control exerted by the electromagnetic plasma drifts and by the thermospheric neutral winds on the low-latitude ionospheric plasma is strongly dependent on the magnetic declination angle at a given longitude. These important longitudinal and latitudinal dependences must be considered for improvement of IRI model predictions at low latitudes.  相似文献   

11.
The peak height of the F2 layer, hmF2, has been calculated using the ‘servo’ model of Rishbeth et al. [(1978), J. atmos. terr. Phys. 40, 767], combined with the hedin et al. [(1988), J. geophys. Res. 93, 9959] neutral wind model. The results are compared with observed values at noon and midnight derived from ionosonde measurements at two mid-latitude stations, Boulder and Wallops Island, over a full solar cycle. The reduced height of the F2 layer, zmF2, is also computed for the same period using the observed hmF2 values and the MSIS-86 model. Day-night, seasonal, and solar cycle variations in zmF2 are attributed to neutral composition changes and winds. Anomalously low values of hmF2 and zmF2 during summer both at solar minimum and during the solar cycle maximum in magnetic activity may be associated with increases in the molecular to atomic ion concentration ratio. Under these circumstances the F2 peak may lie significantly below the O+ peak height calculated by the servo model. Neutral meridional winds at Wallops Island are derived from the servo model using the observed hmF2 values and the calculated O+ ‘balance height’. It is shown that if the anomalously low hmF2 values are used, unrealistically large poleward winds are derived, which are inconsistent with both theory and observations made using other techniques. For most conditions the F2 peak is clearly an O+ peak, and daily mean winds at hmF2 derived from the servo model are consistent with the hedin et al. (1988) wind model. Unexpectedly, the results do not show an abrupt transition in the thermospheric circulation at the equinoxes. Diurnal curves of the servo model winds reveal a larger day-night difference at solar minimum than at solar maximum.  相似文献   

12.
Since the publication of results suggesting the existence of a 6-h tide in the E region above Arecibo [(Tonget al., 1988) J. geophys. Res.93, 10047–10051], much more data has been collected and analyzed. In particular, the time-height trajectories of middle and upper E region Tidal Ion Layers (TILs) for early January 1989 closely resemble those from early January 1981, which first revealed the presence of a 6-h quasi-periodic intermediate layer structure. Further, the January 1989 observations form an ‘overture’ to the March–May 1989 AIDA (Arecibo Initiative in Dynamics of the Atmosphere) campaign, which yielded a total of 28 days of additional data regarding TIL motion. Interestingly, the AIDA data set is dominated, above about 120 km altitude, by sporadic intermediate layers [(mathewset al., 1993) J. atmos. terr. Phys.55, 447–457] and certainly does not show the consistent 6-h period TIL feature seen in the two January data sets. In reviewing all data collected over the past 10 yr and the extensive 1989 observations in particular, we conclude that the basic TIL structure is controlled by two separate tidal wind patterns. We refer to these as the normal pattern and the ‘deep-winter’ pattern. The normal pattern includes the combination of diurnal and semidiurnal tides, while the deep-winter pattern has an additional 6-h tidal component. The deep winter pattern remains unexplained, but we suggest that the 6-h periodicity, which appears to be phase locked with the semidiurnal tide, is generated via in situ non-linear frequency doubling of the semidiurnal tide. The January 1989 results also manifest a TIL structure, below 100 km altitude, which has not been previously reported.  相似文献   

13.
14.
The quiet night-time E-region at high latitudes has been studied using the EISCAT UHF radar. Data from three subsequent nights during a long period of low magnetic activity are shown and typical features of electron density are described. The background electron density is observed to be 5·109 m−3 or smaller. Two types of enhancements above this level are observed ; one is due to charged particle precipitation associated with the F-region trough and the other is composed of sporadic-E layers due to waves in the neutral atmosphere. The sporadic-E is observed to exist almost continuously and to exhibit a regular diurnal behaviour. In addition to the typical afternoon and morning sequential layers, a third major descending layer is formed at night after the passage of the F-region trough The afternoon layer disappears simultaneously with the enhancement of the northward trough-associated electric field and the night-time layer appears at high altitudes after the field has again been reduced to a small value. It is suggested that metal ions from low altitudes are swept by the electric field to the upper E-region where they are again compressed to the night-time layer. A set of steeply descending weaker layers, merging to the main night-time layer are also observed. These layers are most probably caused by atmospheric gravity waves. Theoretical profiles for molecular ions indicate that the strongest layers are necessarily composed of metal ions but, during times when the layers are at their weakest, they may be mainly composed of molecular ions.  相似文献   

15.
A method to measure the reflection coefficient of the sporadic E-layer using a conventional ionosonde is described, and some results obtained at Sodankylä, Finland (Φ=63.8°, φ= 120.0°), are presented. The observations are often found to be in agreement with the theoretical frequency dependence of the reflection coefficient of a thin horizontal layer in the presence of mode coupling. Some of the results can be interpreted as indicative of scattering from small-scale irregularities or reflections from larger inhomogeneities in the Es layer.  相似文献   

16.
We have investigated the middle atmospheric response to the 27-day and 11-yr solar UV flux variations at low to middle latitudes using a two-dimensional photochemical model. The model reproduced most features of the observed 27-day sensitivity and phase lag of the profile ozone response in the upper stratosphere and lower mesosphere, with a maximum sensitivity of +0.51% per 1% change in 205 nm flux. The model also reproduced the observed transition to a negative phase lag above 2 mb, reflecting the increasing importance with height of the solar modulated HOx chemistry on the ozone response above 45 km. The rnodel revealed the general anti-correlation of ozone and solar UV at 65–75 km, and simulated strong UV responses of water vapor and HOx species in the mesosphere. Consistent with previous 1D model studies, the observed upper mesospheric positive ozone response averaged over ±40° was simulated only when the model water vapor concentrations above 75 km were significantly reduced relative to current observations. Including the observed temperature-UV response in the model to account for temperature-chemistry feedback improved the model agreement with observations in the middle mesosphere, but did not improve the overall agreement above 75 km or in the stratosphere for all time periods considered. Consistent with the short photochemical time scales in the upper stratosphere, the model computed ozone-UV sensitivity was similar for the 27-day and 11-yr variations in this region. However, unlike the 27-day variation, the model simulation of the 11-yr solar cycle revealed a positive ozone-UV response throughout the mesosphere due to the large depletion of water vapor and reduced HOx-UV sensitivity. A small negative ozone response at 65–75 km was obtained in the 11-yr simulation when temperature-chemistry feedback was included,In agreement with observations, the model computed a low to middle latitude total ozone phase lag of +3 days and a sensitivity of +0.077% per 1% change in 205 nm flux for the 27-day solar variation, and a total ozone sensitivity of +0.27% for the 11-yr solar cycle. This factor of 3 sensitivity difference is indicative of the photochemical time constant for ozone in the lower stratosphere which is comparable to the 27-day solar rotation period but is much shorter than the 11-yr solar cycle.  相似文献   

17.
In this paper EISCAT observations of the effect of artificial modification on the F-region electron temperature and electron density during several heating experiments at Tromsø are reported. During O-mode heating at full power (ERP = 240 MW) the electron temperature is increased by up to 55% of its ambient value at altitudes close to the heater interaction height. Measurements of the electron density have revealed both enhancements and depletions in the vicinity of the heater reflection height. These differences are indicative of variations in the balance between the transport and chemical effects. These results are compared with a time dependent numerical model developed from the perturbation equations of Vas'kov and Gurevich [(1975) Geomagn. Aeron.15, 51]. The results of numerical modelling of the electron temperature are in good agreement with the EISCAT observations, whereas there is less good agreement with regard to electron density.  相似文献   

18.
The effects of perpendicular electric fields on the high-latitude nocturnal precipitation E-layer are studied in terms of model calculations. The deformations of the electron density profiles caused by vertical plasma movements are described assuming various incident electron energies and flux densities, as well as different field intensities and directions. Manifestations of the profile variations in vertical sounding observations and changes in the conductivity profiles are examined. The results show that field-induced vertical convection is important in plasma densities even higher than 1011 m−3. Erroneous results may be obtained if the effect of the electric field is neglected when determining the incident electron spectrum from a measured ionospheric density profile.  相似文献   

19.
We present an introduction to the use of phase-coherent, multi-receiver HF Doppier sounding arrays for measuring the horizontal velocity of traveling ionospheric disturbances (TID's). The point of departure is the theorem of Pfister (1971, J. atmos. terr. Phys. 33, 999) relating ray Doppler to ray zenith angle for a monostatic full reflection sounder. Retaining the simple model of a specular, smooth ionospheric reflector which is deformed by a propagating undulation, we first generalize the theorem to bistatic sounding geometry and then include the effects of amplitude in addition to phase. Next, these results are cast into an algorithm for treating multi-receiver phase sounders containing many diverse baselines, in order to obtain an accurate and unambiguous solution in the plane of wave slowness (inverse of velocity). The point spread function of this solution is controlled by process bandwidth and by array geometry. We illustrate the coherent-array approach using data from an eight receiver array during passage of a TID.  相似文献   

20.
Winds and tides were measured by a number of MLT (Mesosphere, Lower Thermosphere) radars with locations varying from 43–70°N, 35–68°S, during the first LTCS (Lower Thermosphere Coupling Study) Campaign, 21–25 September 1987. The mean winds were globally westerly, consistent with early winter-like (NH) and late winter (SH) circulations.The semi-diurnal tide had vertical wavelengths near or less than 100 km at most locations, with some latitudinal variation (longer/shorter at lower latitudes in the NH/SH)—amplitudes decreased at high latitudes. The global tide was closer to anti-symmetric, with northward components being in phase at 90 km. Numerical model calculations [Forbes and Vial (1989), J. atmos. lerr. Phys. 51, 649] for September have rather similar wavelengths and amplitudes; however, the global tide was closer to symmetric, and detailed latitudinal trends differed from observed.The diurnal tide had similar wavelengths in each hemisphere, with short values (~30 km) at 35°, long (evanescence) at 68–70°, and irregular phase structures at mid-latitudes. The tide was neither symmetric nor anti-symmetric. Model calculations for the equinox [Forbes. S and Hagan (1988), Planet. Space Sci. 36, 579] were by nature symmetric, and showed the short wavelengths extending to mid-latitudes (43–52°). Southern hemisphere phases were significantly (6–8 h) different from observations. Amplitudes decreased at high latitudes in model and observation profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号