首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The parametric interaction between right-hand circularly polarized electron cyclotron waves as well as non-resonant density and temperature perturbations is considered by taking into account the radiation pressure and the differential Joule heating nonlinearities. A nonlinear dispersion relation, which admits a new class of thermal parametric instabilities for the case in which Joule heating nonlinearity far exceeds the radiation pressure, is derived. It is found that the temperature and density fluctuations are rapidly driven when the pump frequency is close to the electron gyrofrequency. The relevance of our investigation to enhanced density and temperature fluctuations due to the action of high power HF radio waves in the Earth's ionosphere is pointed out.  相似文献   

2.
A coordinated experiment involving scintillation observations using NNSS satellites and special program measurements with the EISCAT ionospheric radar facility is described. The results reveal the presence of sub-kilometre scale irregularities in the vicinity of a long lived steep equatorwards gradient in electron density. Evidence is presented of a southwards plasma flow which would cause the gradient to be unstable to the E Λ B gradient-drift mechanism. An instability growth time of about 4 min has been estimated from the observations. Cooler electron temperatures associated with enhanced densities rules out soft particle precipitation as an irregularity source in this case.  相似文献   

3.
High power radio waves can modify the ionospheric electron density distribution to produce field aligned plasma irregularities which give rise to the anomalous absorption of HF radio waves. The coefficient of anomalous absorption of a vertically propagated radio wave due to scattering from field aligned irregularities has been calculated, taking into account the effects of the geomagnetic field on electron motions. These results are compared with those of other theoretical models. Furthermore, the scale lengths of field aligned irregularities produced by a high power radio wave during recent high latitude modification experiments have been determined from measurements of the anomalous absorption by means of this theory.  相似文献   

4.
Powerful, high frequency (HF) radio waves can be used to temporarily modify the ionosphere. These controlled, active experiments have proven useful both for studies of the natural upper atmosphere through observations of ionospheric response to HF induced perturbations, and for basic physics investigations exploiting the ionosphere as a large, natural plasma laboratory-without-walls. This experimental diversity has attracted the attention and participation of physicists from a wide range of disciplines. As a result, HF ionospheric modification research continues to be strongly motivated by its many applications in the fields of aeronomy, space physics, plasma physics, and telecommunications science.  相似文献   

5.
High frequency waves incident on an overdense ionosphere (i.e. HF < penetration frequency) are known to produce large-scale irregularities with scale sizes of several hundred meters in the F-region of the ionosphere. Three observations of radio star intensity fluctuations at UHF are reported for HF ionospheric modification experiments performed at the Arecibo Observatory. Two observations at 430 MHz and one observation at 1400 MHz indicate that the thin phase screen theory is a good approximation to the observed power spectra. However, the theory has to be extended to include antenna filtering. Such filtering is important for UHF radio star scintillations since the antenna usually has a narrow beam width. HF power densities of less than 37 μW m−2 incident on the ionosphere produce electron density irregularities larger than 13% of the ambient density (at 260 km) having scale sizes of ~510 m perpendicular to the geomagnetic field. The irregularities form within 20–25 s after the HF power is turned on. From the observed power spectra driftvelocities of the irregularities can be estimated.  相似文献   

6.
The possible generation and suppression of ion-cyclotron waves in a collisional plasma by external high power electromagnetic (EM) waves with frequency close to the local upper-hybrid frequency is considered. It is shown that the ion cyclotron instability can be destabilized (stabilized) for ω0UH0 > ωUH), where ω0 is the pump frequency of the EM wave. The results are applied to naturally occurring ion-cyclotron instabilities in the high latitude ionosphere.  相似文献   

7.
Small scale sub-auroral F-region irregularities were observed on 6–7 February 1984 by the two HF radars of the EDIA experiment while the EISCAT UHF system was scanning the ionosphere between 57° and 66° invariant latitude at a slightly different longitude. The bistatic EDIA system was mainly designed to detect the F-region irregularities at sub-auroral latitudes and to measure their perpendicular velocities. This paper is devoted to an examination of the morphology of the irregularity regions detected by the HF radars and of their production mechanisms, by comparison with the horizontal and vertical electron density profiles measured by EISCAT. It is shown that decametric irregularities observed at about 360–430 km height are not associated with any large scale horizontal density gradients in the F-region (350km). However, a strong north-south gradient observed at lower altitudes (150–200km), which is likely to indicate the southern boundary of the high energy particle precipitation zone, is well correlated with the strong scattering regions observed by the HF radars. The EISCAT electron temperature measurements at 350km height also show horizontal gradients which are well correlated with the small scale F-region irregularities. We discuss implications of these observations on the mechanisms of production of irregularities in the sub-auroral F-region.  相似文献   

8.
Calculations using a numerical model of the convection dominated high latitude ionosphere are compared with observations made by EISCAT as part of the UK-POLAR Special Programme. The data used were for 24–25 October 1984, which was characterized by an unusually steady IMF, with Bz < 0 and By > 0; in the calculations it was assumed that a steady IMF implies steady convection conditions. Using the electric field models of Heppner and Maynard (1983) appropriate to By > 0 and precipitation data taken from Spiroet al. (1982), we calculated the velocities and electron densities appropriate to the EISCAT observations. Many of the general features of the velocity data were reproduced by the model. In particular, the phasing of the change from eastward to westward flow in the vicinity of the Harang discontinuity, flows near the dayside throat and a region of slow flow at higher latitudes near dusk were well reproduced. In the afternoon sector modelled velocity values were significantly less than those observed. Electron density calculations showed good agreement with EISCAT observations near the F-peak, but compared poorly with observations near 211 km. In both cases, the greatest disagreement occurred in the early part of the observations, where the convection pattern was poorly known and showed some evidence of long term temporal change. Possible causes for the disagreement between observations and calculations are discussed and shown to raise interesting and, as yet, unresolved questions concerning the interpretation of the data. For the data set used, the late afternoon dip in electron density observed near the F-peak and interpreted as the signature of the mid-latitude trough is well reproduced by the calculations. Calculations indicate that it does not arise from long residence times of plasma on the nightside, but is the signature of a gap between two major ionization sources, viz. photoionization and particle precipitation.  相似文献   

9.
Results are presented from a coordinated experiment involving scintillation observations using transmissions from NNSS satellites and simultaneous measurements with the EISCAT ionospheric radar facility. The scintillation was used to indicate the presence of sub-kilometre scale irregularities while the radar yielded information on the larger structures in the background ionosphere. Two examples are discussed in which localised patches of scintillation were observed at L-shells near ‘blob’ like enhancements in F-region ionisation density. Elevated electron temperatures indicated that the enhancements may have had their origins in soft particle precipitation. While structuring of the precipitation on the 100 m scale cannot be completely ruled out as a source of the irregularities, in one case the blob gradient can be shown to be stable to the E λ B mechanism. The most likely cause of the irregularities appears to be shearing of the high velocity plasma flow in a region adjacent to the density enhancement. This region is characterised by a high ion temperature while the resulting scintillation has a shallow spectral slope.  相似文献   

10.
The results of numerical modelling of powerful HF radio wave propagation through the ionosphere plasma are presented. Comparison of the heating wave parameters with those of a low powerwave gives the possibility to study the self-action of the powerful HF wave. At low altitudes the ‘translucence’ of the ionosphere plasma takes place. At high altitudes the wave absorption sharply increases. Both self-action effects lead to the reduction of the altitude range of the heated region. The dependence of self-action effects and the resulting electron temperature profiles on the initial electron density profiles are studied.  相似文献   

11.
Two radars were used simultaneously to study naturally occurring electron heating events in the auroral E-region ionosphere. During a joint campaign in March 1986 the Cornell University Portable Radar Interferometer (CUPRI) was positioned to look perpendicular to the magnetic field to observe unstable plasma waves over Tromsø, Norway, while EISCAT measured the ambient conditions in the unstable region. On two nights EISCAT detected intense but short lived (< 1 min) electron heating events during which the temperature suddenly increased by a factor of 2–4 at altitudes near 108 km and the electron densities were less than 7 × 104 cm−3. On the second of these nights CUPRI was operating and detected strong plasma waves with very large phase velocities at precisely the altitudes and times at which the heating was observed. The altitudes, as well as one component of the irregularity drift velocity, were determined by interferometric techniques. From the observations and our analysis, we conclude that the electron temperature increases were caused by plasma wave heating and not by either Joule heating or particle precipitation.  相似文献   

12.
Measurements of the E-region electron density were made with the Saint-Santin incoherent scatter radar during consecutive days in June 1978, March 1979 and December 1980. On the basis of a statistical study, the observations show the presence of a diurnal asymmetry of the electron density, with morning values usually exceeding the afternoon densities by 3–20%. Two possible causes of the dissymmetry are examined: the asymmetry in the diurnal variation of the neutral composition and the effect of nitric oxide. The presence of NO partly converts O2+ into NO+ ions and increases the effective recombination rate of the electrons in the afternoon. Numerical simulations assessing the relative importance of the two factors are, in general, in good agreement with the measurements.  相似文献   

13.
We report about a quantitative comparison of rocket observations of electron density fluctuations and simultaneous 53.5 MHz radar measurements that were obtained during the MAC/SINE campaign in northern Norway in summer 1987. Out of three rockets launched during the Tur-bulence/Gravity Wave salvo on 14 July 1987, two were flown during conditions that allowed a detailed investigation. For a large part of the data from these rocket flights it is found that the radar reflectivity is about 10 dB, enhanced over what would be expected from the rocket observations in the case of isotropic electron density fluctuations. The observations can be reconciled under the assumption of an anisotropic turbulence. Assuming a simple model spectrum for the electron density fluctuations, we derive a relation between the rocket and radar observations that covers the whole range from isotropic turbulent scatter to Fresnel scatter at horizontal density stratifications. For the observed dataset, an anisotropy which typically corresponds to a ratio of the horizontal to the vertical coherence length of about 10 is consistent with the comparison of rocket and radar observations. A similar anisotropy is found also from the observed aspect sensitivity of the radar echoes. The variation of the anisotropy with height and time shows an anticorrelation with the turbulence level of the mesosphere as deduced from the spectral width of the radar echoes. The anisotropy is found to maximize in heights where the electron density displays deep ‘bite-outs’. These depletions in the electron density were independently observed by a Langmuir and an admittance probe on board two of the rockets.  相似文献   

14.
Millstone Hill incoherent scatter (IS) observations of electron density (Ne, electron temperature (Te) and ion temperature (Ti) are compared with the International Reference Ionosphere (IRI-86) for both noon and midnight, for summer, equinox and winter, at both solar maximum (1979–1980) and solar minimum (1985–1986). The largest difference inNe is found in the topside, where values of Ne given by IRI-86 are generally larger than those obtained from IS measurements, by a factor which increases with increasing height, and which has a mean value near two at 600 km. Apart from the bottom of the profile, which is tied to the CIRA neutral temperature, the IRI-86 Te model has no solar cycle variation. However, the IS measurements during the summer reveal larger Te at solar maximum than at solar minimum. At other seasons higher Te at solar maximum occurs only during the daytime at the greater heights. Nighttime Te is shown by the IS radar to be generally larger in winter than in summer, an effect not included in the IRI. This is apparently due to photoelectron heating during winter from the sunlit ionosphere conjugate to Millstone Hill. The day-night difference in Ti given by IRI-86 above 600km is not as large in the IS measurements.  相似文献   

15.
Many papers have been published to devise models to describe the sources of large and medium scale atmospheric gravity waves (AGWs) in the auroral oval ionosphere. One of the models proposed by Chimonas and Hines [(1970) Planet. Space Sci.18, 565] calculated the relative importance of Lorentz force and Joule heating as sources of AGWs in the auroral regions based on certain assumptions. In this paper, we develop a general theory to describe the behavior of the AGW source terms. It has been found that the source terms which generate AGWs are closely related to the velocities and frequencies of AGWs, and that the Lorentz force is dominant in generating the vertical velocity perturbation of large scale AGWs. The formulas which determine the source term contributions are derived. This relationship gives us the possibility to predict what kind of AGW will be generated by observing the source terms, or conversely perhaps to deduce some of the source characteristics by measuring properties of the traveling ionospheric disturbances (TIDs).  相似文献   

16.
Measurements of ion temperature, ion-neutral collision frequency and ion drift in the E-region from the period December 1984 to November 1985 are used to derive neutral temperatures, densities and meridional winds in the altitude intervals 92–120 km, 92–105 km and 92–120 km, respectively. Altitude profiles of temperature and density and their seasonal variations are compared with the CIRA 1972 and MSIS 1983 models and the effects of geomagnetic activity are demonstrated. Semi-diurnal tidal variations in all three parameters are derived and the comparison with lower latitude measurements is discussed.  相似文献   

17.
The spectra of high frequency waves backscattered at night by small scale (10–20 m) sub-auroral F-region irregularities often exhibit large Doppler shifts and widths in the local time sector 2000–2400. After local midnight the Doppler shifts and the widths of the spectra decrease rapidly. We present examples of experimental data, obtained with the two coherent backscatter radars of the EDIA1 experiment, showing the spectral characteristics just mentioned. From the Doppler shift measured at the two sites we deduced the perpendicular velocity of the irregularities, which can reach values as high as 2000 ms −1. These observations are interpreted using results of theoretical models which predict strong sub-auroral ion flow in the trough region.  相似文献   

18.
This paper generalizes experimental data on variations of the angles of arrival of transionospheric radio signals caused by changes in a regular ionosphere and by effects of medium-scale travelling ionospheric disturbances (TIDs). The data are based on radio astronomical observations of discrete sources and compact active features on the Sun as well as on angular measurements of signals from artificial Earth satellites with geostationary and circular orbits.The experimental data are interpreted through calculations of refraction corrections using a Gaussian model of a regular ionosphere disturbed by a three-dimensional travelling wave (the TID model) as well as an adaptive model of a regular ionosphere. Some possibilities of correcting refraction distortions with the use of appropriate models and ionospheric diagnostic tools are discussed.  相似文献   

19.
The main object of the campaign reported here was to compare TID characteristics obtained from two essentially different observation techniques: (1) observation of the apparent angular position shifts of Virgo A by the Nançay radioheliograph (47.33°N, 2.15°E) gave azimuths and periods of travelling ionospheric disturbances (TIDs); (2) differential Doppler shifts of signals from NNSS-satellites recorded simultaneously at Tours (47.35°N, 0.70°E), Nançay and Besançon (47.32°N, 5.99°E) provided azimuths and latitudinal wavelengths. Observations were made during the period 10–30 November 1987, between 6 and 12 h UT. It is found that azimuths obtained from the two techniques are consistent if sufficient averaging over wave trains is performed: averaging over several hours for radio interferometry and averaging over the whole satellite trace for the differential Doppler technique. Averaging is necessary because of (1) the intrinsic dispersion in wave azimuth, (2) the broadness of observed wave spectra and the dispersive properties of gravity waves, and (3) the spatial separation of ionospheric points for the two techniques. Good agreement between the azimuths was achieved by setting the altitude of the TIDs, which is used in the differential Doppler analysis, to about 250 km, appreciably lower than the maximum in electron density (about 350 km). The mean azimuth of observed TIDs was 12° East from South with a standard deviation of about 30°. The dominant period and horizontal wavelength of the observed TIDs were 40 min and 450 km. The East-West coherence length of the TIDs was found to be only of the order of 200 km.  相似文献   

20.
We have detected wind oscillations with periods ranging from 1.4 to 20 days at 80–110 km altitude using Kyoto meteor radar observations made in 1983–1985. Among these oscillations, the quasi-2-day wave is repeatedly enhanced in summer and autumn. We found that the period of the quasi-2-day wave ranges from 52 to 55 h in summer, and becomes as short as 46 to 48 h in autumn in 1983 and 1984. The change in the wave period seems to coincide with a decrease in the amplitude of the zonal mean wind. A quasi-2-day wave event was simultaneously observed in January 1984 at Kyoto (35° N, 136°E) and Adelaide (35° S, 138° E), which are located at conjugate points relative to the geographic equator. Amplitudes of the meridional component at Adelaide are approximately four times larger than those observed at Kyoto. Comparison observations clearly show that the meridional component is in phase and the zonal component is out of phase, respectively, implying antisymmetry of the quasi-2-day wave between the northern and southern hemispheres. Relative phase progressions with height are similar between the Kyoto and Adelaide results for both meridional and zonal components, and indicate the presence of an upward energy propagating wave with a vertical wavelength of about 100 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号