首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field sampling and mathematical modeling are used to study the long‐distance transport and attenuation of petroleum‐derived benzene in the Uinta Basin, Utah. Benzene concentration was measured from oil and oil field formation waters of the Altamont‐Bluebell and Pariette Bench oil fields in the basin. It was also measured from springs located in the regional groundwater discharge areas, hydraulically down‐gradient from the oil fields sampled. The average benzene concentration in oils and co‐produced waters is 1946 and 4.9 ppm at the Altamont‐Bluebell field and 1533 and 0.6 ppm at the Pariette Bench field, respectively. Benzene concentration is below the detection limit in all springs sampled. Mathematical models are constructed along a north–south trending transect across the basin through both fields. The models represent groundwater flow, heat transfer and advective/dispersive benzene transport in the basin, as well as benzene diffusion within the oil reservoirs. The coupled groundwater flow and heat transfer model is calibrated using available thermal and hydrologic data. We were able to reproduce the observed excess fluid pressure within the lower Green River Formation and the observed convective temperature anomalies across the northern basin. Using the computed best‐fit flow and temperature, the coupled transport model simulates water washing of benzene from the oil reservoirs. Without the effect of benzene attenuation, dissolved benzene reaches the regional groundwater discharge areas in measurable concentration (>0.01 ppm); with attenuation, benzene concentration diminishes to below the detection limit within 1–4 km from the reservoirs. Attenuation also controls the amount of water washing over time. In general, models that represent benzene attenuation in the basin produce results more consistent with field observations.  相似文献   

2.
Pleistocene melting of kilometer‐thick continental ice sheets significantly impacted regional‐scale groundwater flow in the low‐lying stable interiors of the North American and Eurasian cratons. Glacial meltwaters penetrated hundreds of meters into the underlying sedimentary basins and fractured crystalline bedrock, disrupting relatively stagnant saline fluids and creating a strong disequilibrium pattern in fluid salinity. To constrain the impact of continental glaciation on variable density fluid flow, heat and solute transport in the Michigan Basin, we constructed a transient two‐dimensional finite‐element model of the northern half of the basin and imposed modern versus Pleistocene recharge conditions. The sag‐type basin contains up to approximately 5 km of Paleozoic strata (carbonates, siliciclastics, and bedded evaporites) overlain by a thick veneer (up to 300 m) of glacial deposits. Formation water salinity increases exponentially from <0.5 g l?1 total dissolved solids (TDS) near the surface to >350 g l?1 TDS at over 800 m depth. Model simulations show that modern groundwater flow is primarily restricted to shallow glacial drift aquifers with discharge to the Great Lakes. During the Pleistocene, however, high hydraulic heads from melting of the Laurentide Ice Sheet reversed regional flow patterns and focused recharge into Paleozoic carbonate and siliciclastic aquifers. Dilute waters (<20 g l?1 TDS) migrated approximately 110 km laterally into the Devonian carbonate aquifers, significantly depressing the freshwater‐saline water mixing zones. These results are consistent with 14C ages and oxygen isotope values of confined groundwaters in Devonian carbonates along the basin margin, which reflect past recharge beneath the Laurentide Ice Sheet (14–50 ka). Constraining the paleohydrology of glaciated sedimentary basins, such as the Michigan Basin, is important for determining the source and residence times of groundwater resources, in addition to resolving geologic forces responsible for basinal‐scale fluid and solute migration.  相似文献   

3.
J. UNDERSCHULTZ 《Geofluids》2005,5(3):221-235
The effects of capillarity in a multilayered reservoir with flow in the aquifer beneath have characteristic signatures on pressure–elevation plots. Such signatures are observed for the Griffin and Scindian/Chinook fields of the Carnarvon Basin North West Shelf of Australia. The Griffin and Scindian/Chinook fields have a highly permeable lower part to the reservoir, a less permeable upper part, and a low permeability top seal. In the Griffin Field there is a systematic tilt of the free‐water level in the direction of groundwater flow. Where the oil–water contact occurs in the less permeable part of the reservoir, it lies above the free‐water level due to capillarity. In addition to these observable hydrodynamic and capillary effects on hydrocarbon distribution, the multi‐well pressure analysis shows that the gas–oil contacts in the Scindian/Chinook fields occur at different elevations. For both the Griffin and Scindian/Chinook fields the oil pressure gradients from each well are non‐coincident despite continuous oil saturation, and the difference is not attributable to data error. Furthermore, the shift in oil pressure gradient has a geographical pattern seemingly linked to the hydrodynamics of the aquifer. The simplest explanation for all the observed pressure trends is an oil leg that is still in the process of equilibrating with the prevailing hydrodynamic regime.  相似文献   

4.
The Seferihisar–Balçova Geothermal system (SBG) is characterized by complex temperature and hydrochemical anomalies. Previous geophysical and hydrochemical investigations suggest that hydrothermal convection in the faulted areas of the SBG and recharge flow from the Horst may be responsible for the observed patterns. A numerical model of coupled fluid flow and heat transport processes has been built in order to study the possible fluid dynamics of deep geothermal groundwater flow in the SBG. The results support the hypothesis derived from interpreted data. The simulated scenarios provide a better understanding of the geophysical conditions under which the different fluid dynamics develop. When recharge processes are weak, the convective patterns in the faults can expand to surrounding reservoir units or below the seafloor. These fault‐induced drag forces can cause natural seawater intrusion. In the Melange of the Seferihisar Horst, the regional flow is modified by buoyant‐driven flow focused in the series of vertical faults. As a result, the main groundwater divide can shift. Sealing caprocks prevent fault‐induced cells from being overwhelmed by vigorous regional flow. In this case, over‐pressured, blind geothermal reservoirs form below the caprocks. Transient results showed that the front of rising hot waters in faults is unstable: the tip of the hydrothermal plumes can split and lead to periodical temperature oscillations. This phenomenon known as Taylor–Saffman fingering has been described in mid‐ocean ridge hydrothermal systems. Our findings suggest that this type of thermal pulsing can also develop in active, faulted geothermal systems. To some extent, the role of an impervious fault core on the flow patterns has been investigated. Although it is not possible to reproduce basin‐scale transport processes, this first attempt to model deep groundwater geothermal flow in the SBG qualitatively supported the interpreted data and described the different fluid dynamics of the basin. Geofluids (2010) 10 , 388–405  相似文献   

5.
B. Jung  G. Garven  J. R. Boles 《Geofluids》2014,14(2):234-250
Fault permeability may vary through time due to tectonic deformations, transients in pore pressure and effective stress, and mineralization associated with water‐rock reactions. Time‐varying permeability will affect subsurface fluid migration rates and patterns of petroleum accumulation in densely faulted sedimentary basins such as those associated with the borderland basins of Southern California. This study explores the petroleum fluid dynamics of this migration. As a multiphase flow and petroleum migration case study on the role of faults, computational models for both episodic and continuous hydrocarbon migration are constructed to investigate large‐scale fluid flow and petroleum accumulation along a northern section of the Newport‐Inglewood fault zone in the Los Angeles basin, Southern California. The numerical code solves the governing equations for oil, water, and heat transport in heterogeneous and anisotropic geologic cross sections but neglects flow in the third dimension for practical applications. Our numerical results suggest that fault permeability and fluid pressure fluctuations are crucial factors for distributing hydrocarbon accumulations associated with fault zones, and they also play important roles in controlling the geologic timing for reservoir filling. Episodic flow appears to enhance hydrocarbon accumulation more strongly by enabling stepwise build‐up in oil saturation in adjacent sedimentary formations due to temporally high pore pressure and high permeability caused by periodic fault rupture. Under assumptions that fault permeability fluctuate within the range of 1–1000 millidarcys (10?15–10?12 m2) and fault pressures fluctuate within 10–80% of overpressure ratio, the estimated oil volume in the Inglewood oil field (approximately 450 million barrels oil equivalent) can be accumulated in about 24 000 years, assuming a seismically induced fluid flow event occurs every 2000 years. This episodic petroleum migration model could be more geologically important than a continuous‐flow model, when considering the observed patterns of hydrocarbons and seismically active tectonic setting of the Los Angeles basin.  相似文献   

6.
Vitrinite reflectance data from a petroleum exploration well in the northern Upper Rhinegraben show an unusual vertical maturity trend. Above and below a 500 m thick marl layer the vitrinite reflectance levels are consistent with modern, conductive, geothermal gradients. Between about 1000 and 1500 m depth, however, vitrinite reflectance levels are significantly elevated (about 0.6%Ro). This anomaly cannot be explained with one‐dimensional conductive or conductive–convective heat transfer models, and thermal effects of sedimentation or igneous intrusion seem implausible for this geological setting. The thermal anomaly that formed this maturation anomaly must have been hydrothermal in origin, two‐dimensional in nature, and persisted long enough to elevate the vitrinite reflectance values within this marl unit, yet it must have dissipated before the thermal perturbation would have altered the organic matter below and above the unit. In this study, we propose that the vitrinite reflectance anomalies were caused by a transient thermal inversion induced by episodic, lateral flow of hot (130–160°C) groundwater along conductive fractures and bedding planes. Heat flow constraints suggest that fluids must have moved rapidly up a vertical feeder fault from a depth of at least 3.6 km before migrating laterally. To test this hypothesis, we present a suite of simple, idealized mathematical models of groundwater flow, heat transfer, thermal degradation of kerogen and vitrinite systematics to explore the episodic flow that could have produced the observed thermal anomaly. In these simulations, a single, horizontal aquifer is sandwiched between two less permeable units: the total dimensions of the vertical section model are 4 km thick by 10 km long. The top of the aquifer coincides with the position of the observed thermal maturity anomaly in the Rhinegraben. Boundary conditions along the left edge of this aquifer were varied through time to allow for the migration of hot fluids out into the basin. Inflow temperature, horizontal velocity, duration and frequency of flow and thickness of the aquifer were varied. We found that a thermal maturity anomaly could only be produced by a rather restrictive set of hydrothermal conditions. It was possible to produce the observed vitrinite reflectance anomaly by a single hydrothermal flow event of 130°C fluid migrating laterally into the aquifer at a rate of 1 m a?1 for about 10 000 years. The anomaly is spatially confined to near the left edge of the basin, near the feeder fault. If the flow event lasted longer than 100 000 years, then the maturation anomaly disappeared as the lower confining unit approached steady‐state thermal conditions. It is possible that such an event occurred about 5 million years ago in response to increases in fault permeability associated with far field Alpine tectonism.  相似文献   

7.
Topography‐driven flow is normally considered to be the dominant groundwater flow system in uplifted sedimentary basins. In the U.S. midcontinent region east of the Rocky Mountains, the presence of brines derived from dissolution of halite suggests that significant topography‐driven flushing has occurred to remove older brines that presumably formed concurrently with Permian evaporites in the basin. However, the presence of evaporites and brines in the modern basin suggests that buoyancy‐driven flow could limit topography‐driven flushing significantly. Here we used numerical models of variable‐density fluid flow, halite dissolution, solute transport, and heat transport to quantify flow patterns and brine migration. Results indicate the coexistence of large‐scale topography‐ and buoyancy‐driven flow. Buoyancy‐driven flow and low permeability evaporites act to isolate brines, and the residence time of the brines was found to be quite long, at least 50 Myr. The modern distribution of salinity appears to reflect near‐steady‐state conditions. Results suggest that flushing of original evaporatively‐concentrated brines occurred tens of millions of years ago, possibly concurrent with maximum uplift ca. 60 Ma. Simulations also suggest that buoyancy‐driven convection could drive chemical exchange with crystalline basement rocks, which could supply significant Ca2+, Sr2+, and metals to brines.  相似文献   

8.
Numerical groundwater modeling was used to investigate the role of fluid flow associated with uplift of the Arkoma basin during the closing stages of the Ouachita orogeny in forming the Mississippi Valley‐type Zn–Pb ores of the Tri‐State district. The model hydrostratigraphy was flexurally compensated to account for the restoration of Pennsylvanian–Permian sediments removed since the close of the orogeny in estimating the regional paleotopographic gradient. Estimates of the amount of Pennsylvanian–Permian sediment that has been removed by erosion vary widely. A thick and a thin endmember case were considered, and in both cases topographydriven fluid flow was shown to have been an important mechanism for groundwater motion, with a lesser component contributed during the early stages of uplift by overpressuring created by compaction in the deep portion of the Arkoma basin. The Pennsylvanian–Permian sediments and underlying Western Interior Plains confining system acted as thick capping aquitards that caused slow rates of groundwater flow over much of the profile. As a result, meteoric water infiltration initiated during uplift was slow to flush saline formation waters, allowing MVT ore‐forming salinities to persist at Tri‐State on the order of at least 100 Myr. The slow groundwater flow rates also caused heat transport to occur primarily by conduction rather than advection. Despite this, MVT ore‐forming temperatures were still reached at Tri‐State for both endmember cases of Pennsylvanian–Permian aquitard thickness, though much more readily in the thick aquitard case. Faults within the Tri‐State district served as a regional fluid focusing mechanism and probably played a more important role in localizing mineralization than the window in the Ozark confining unit that occurs in the district. Fluids rising along these faults could have cooled by about 8–10°C and as much as another 0.3°C km?1 as they flowed laterally northward. This temperature change alone however would not have been sufficient to precipitate the total mass of metal sulfide ore occurring at Tri‐State.  相似文献   

9.
Basin‐wide sediment transport affects estimates of basin sediment yield, which is a fundamental scientific issue in drainage basin studies. Many studies have been conducted to examine erosion and deposition rates in drainage networks. In this study, we proposed a new approach using grain‐size standard deviation model of sedimentary samples from different geomorphological units for numerical analysis and paleo‐climate interpretation in the Shiyang River drainage basin, arid China. 1043 sedimentary samples were obtained from the upper reaches, the midstream alluvial plain and the terminal lake area; chronological frames were established based on 58 radiocarbon ages. Grain‐size standard deviation model was introduced to examine sediment components according to grain‐size and transport forces. In addition, transient paleo‐climate simulations, including the Community Climate System Model version 3 and the Kiel models, were synthesized, as well as the results from PMIP 3.0 project, to detect the long‐term climate backgrounds. Totally, we found four major common components, including fine particulates (<2 μm), fine silt (2–20 μm), sandy silt (20–200 μm), coarse sand (>200 μm), from basin‐wide sedimentary samples. The fine particulates and fine silt components exist in all the sedimentary facies, showing long‐term airborne aerosol changes and its transport by suspended load. There are some differences in ranges of sandy silt and coarse sand components, due to lake and river hydrodynamics, as well as the distance with the Gobi Desert. Paleo‐climate simulations have shown that the strong Asian summer monsoon during the transition of the Last Deglaciation and Holocene was conducive to erosion and transport of basin‐wide suspended load, also enhancing sediment sorting effects due to strong lake hydrodynamics. Our findings provide a new approach in research of long‐term basin‐wide sediment transport processes.  相似文献   

10.
We demonstrate the use of PVT fluid inclusion modelling in the calculation of palaeofluid formation pressures, using samples from the YC21‐1‐1 and YC21‐1‐4 wells in the YC21‐1 structural closure, Qiongdongnan Basin, South China Sea. Homogenisation temperatures and gas/liquid ratios were measured in aqueous fluid inclusions, and associated light hydrocarbon/CO2‐bearing inclusions, and their compositions were determined using a crushing technique. The vtflinc software was used to construct PT phase diagrams that enabled derivation of the minimum trapping pressure for each order of fluid inclusion. Through the projection of average homogenisation temperatures (155, 185.5 and 204.5°C) for three orders of fluid inclusion on the thermal‐burial history diagram of the Oligocene Yacheng and Lingshui formations, their trapping times were constrained at 4.3, 2.1 and 1.8 Ma, respectively. The formation pressure coefficient, the ratio of fluid pressure/hydrostatic pressure established by PVT modelling coupled with DST data, demonstrates that one and a half cycles of pressure increase–discharge developed in the Yacheng and Lingshui formations for about 4.3 Ma. In comparison, the residual formation pressure determined by 2D numerical modelling in the centre of LeDong depression shows two and a half pressure increase–discharge cycles for about 28 Ma. The two different methods suggest that a high fluid potential in the Oligocene reservoir of the YC21‐1 structure developed at two critical stages for regional oil and natural gas migration and accumulation (5.8 and 2.0 Ma, respectively). Natural gas exploration in this area is therefore not advisable.  相似文献   

11.
M. A. Simms  G. Garven 《Geofluids》2004,4(2):109-130
Thermal convection has the potential to be a significant and widespread mechanism of fluid flow, mass transport, and heat transport in rift and other extensional basins. Based on numerical simulation results, large‐scale convection can occur on the scale of the basin thickness, depending on the Rayleigh number for the basin. Our analysis indicates that for syn‐rift and early post‐rift settings with a basin thickness of 5 km, thermal convection can occur for basal heat flows ranging from 80 to 150 mW m?2, when the vertical hydraulic conductivity is on the order of 1.5 m year?1 and lower. The convection cells have characteristic wavelengths and flow patterns depending on the thermal and hydraulic boundary conditions. Steeply dipping extensional faults can provide pathways for vertical fluid flow across large thicknesses of basin sediments and can modify the dynamics of thermal convection. The presence of faults perturbs the thermal convective flow pattern and can constrain the size and locations of convection cells. Depending on the spacing of the faults and the hydraulic properties of the faults and basin sediments, the convection cells can be spatially organized to align with adjacent faults. A fault‐bounded cell occurs when one convection cell is constrained to occupy a fault block so that the up‐flow zone converges into one fault zone and the down‐flow zone is centred on the adjacent fault. A fault‐bounded cell pair occurs when two convection cells occupy a fault block with the up‐flow zone located between the faults and the down‐flow zones centred on the adjacent faults or with the reverse pattern of flow. Fault‐bounded cells and cell pairs can be referred to collectively as fault‐bounded convective flow. The flow paths in fault‐bounded convective flow can be lengthened significantly with respect to those of convection cells unperturbed by the presence of faults. The cell pattern and sense of circulation depend on the fault spacing, sediment and fault permeabilities, lithologic heterogeneity, and the basal heat flow. The presence of fault zones also extends the range of conditions for which thermal convection can occur to basin settings with Rayleigh numbers below the critical value for large‐scale convection to occur in a basin without faults. The widespread potential for the occurrence of thermal convection suggests that it may play a role in controlling geological processes in rift basins including the acquisition and deposition of metals by basin fluids, the distribution of diagenetic processes, the temperature field and heat flow, petroleum generation and migration, and the geochemical evolution of basin fluids. Fault‐bounded cells and cell pairs can focus mass and heat transport from longer flow paths into fault zones, and their discharge zones are a particularly favourable setting for the formation of sediment‐hosted ore deposits near the sea floor.  相似文献   

12.
Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with the Navier‐Stokes law and advection–diffusion transport to perform geometry‐coupled numerical simulations in order to study the evolution of chemical reactions, species concentration, and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damköhler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and Da > 10?1). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number Pe > 10?1). When the reaction rate is low as in anorthite reservoirs (Da < 10?1), reactant species are more readily transported toward the outlet. At a given Peclet number, a lower Damköhler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length‐to‐aperture ratio is sufficiently large, say l/d > 30, the system response resembles the solution for 1D reactive fluid transport. A decreased length‐to‐aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.  相似文献   

13.
We model pore‐pressure diffusion caused by pressurized waste‐fluid injection at two nearby wells and then compare the buildup of pressure with the observed initiation and migration of earthquakes during the early part of the 2010–2011 Guy–Greenbrier earthquake swarm. Pore‐pressure diffusion is calculated using MODFLOW 2005 that allows the actual injection histories (volume/day) at the two wells to diffuse through a fractured and faulted 3D aquifer system representing the eastern Arkoma basin. The aquifer system is calibrated using the observed water‐level recovery following well shut‐in at three wells. We estimate that the hydraulic conductivities of the Boone Formation and Arbuckle Group are 2.2 × 10?2 and 2.03 × 10?3 m day?1, respectively, with a hydraulic conductivity of 1.92 × 10?2 m day?1 in the Hunton Group when considering 1.72 × 10?3 m day?1 in the Chattanooga Shale. Based on the simulated pressure field, injection near the relatively conductive Enders and Guy–Greenbrier faults (that hydraulically connect the Arbuckle Group with the underlying basement) permits pressure diffusion into the crystalline basement, but the effective radius of influence is limited in depth by the vertical anisotropy of the hydraulic diffusivity. Comparing spatial/temporal changes in the simulated pore‐pressure field to the observed seismicity suggests that minimum pore‐pressure changes of approximately 0.009 and 0.035 MPa are sufficient to initiate seismic activity within the basement and sedimentary sections of the Guy–Greenbrier fault, respectively. Further, the migration of a second front of seismicity appears to follow the approximately 0.012 MPa and 0.055 MPa pore‐pressure fronts within the basement and sedimentary sections, respectively.  相似文献   

14.
Although characterized by low seismicity, the Monferrato area of north‐western Italy was affected by earthquakes, of magnitude M5.1 and M4.8, in 2000 and 2001. At the same time, marked changes were recorded in water temperature and chemistry in several wells within the epicentral area. In May 2004, an automatic network for the continuous monitoring of groundwater was installed in selected wells to study the phenomenon. Here, we report on data collected during a 3‐year period of groundwater monitoring. During the first year, episodes of water heating (by up to 20°C) were observed in one monitored well. The temporal analysis of the seismic activity recorded in the area revealed as almost all seismic events occurred during the period of elevated water temperatures. The similar timing of earthquakes and groundwater‐temperature anomalies suggests that both may be triggered by the same processes acting in the crust.  相似文献   

15.
Samples from the Amposta Marino C2 well (Amposta oil field) have been investigated in order to understand the origin of fractures and porosity and to reconstruct the fluid flow history of the basin prior, during and after oil migration. Three main types of fracture systems and four types of calcite cements have been identified. Fracture types A and B are totally filled by calcite cement 1 (CC1) and 2 (CC2), respectively; fracture type A corresponds to pre‐Alpine structures, while type B is attributed to fractures developed during the Alpine compression (late Eocene‐early Oligocene). The oxygen, carbon and strontium isotope compositions of CC2 are close to those of the host‐rock, suggesting a high degree of fluid‐rock interaction, and therefore a relatively closed palaeohydrogeological system. Fracture type C, developed during the Neogene extension and enlarged by subaerial exposure, tend to be filled with reddish (CS3r) and greenish (CS3g) microspar calcite sediment and blocky calcite cement type 4 (CC4), and postdated by kaolinite, pyrite, barite and oil. The CS3 generation records lower oxygen and carbon isotopic compositions and higher 87Sr/86Sr ratios than the host‐limestones. These CS3 karstic infillings recrystallized early within evolved‐meteoric waters having very little interaction with the host‐rock. Blocky calcite cement type 4 (CC4 generation) has the lowest oxygen isotope ratio and the most radiogenic 87Sr/86Sr values, indicating low fluid‐rock interaction. The increasingly open palaeohydrogeological system was dominated by migration of hot brines with elevated oxygen isotope ratios into the buried karstic system. The main oil emplacement in the Amposta reservoir occurred after the CC4 event, closely related to the Neogene extensional fractures. Corrosion of CC4 (blocky calcite cement type 4) occurred prior to (or during) petroleum charge, possibly related to kaolinite precipitation from relatively acidic fluids. Barite and pyrite precipitation occurred after this corrosion. The sulphur source associated with the late precipitation of pyrite was likely related to isotopically light sulphur expelled, e.g. as sulphide, from the petroleum source rock (Ascla Fm). Geofluids (2010) 10 , 314–333  相似文献   

16.
Diffusion can drive significant solute transport over millions of years, but ancient brines and large salinity gradients are still observed in deep sedimentary basins. Fluid flow within abnormally pressured beds may prevent diffusive transfer over geologically significant periods, if the abnormally pressured bed is surrounded by normally pressured beds. Analytic solutions based on sediment loading and unloading demonstrate that this effect should be considered in beds with a compressibility exceeding 10?8 Pa?1, with a thickness of 100 m or more, or a sedimentation rate exceeding 10?5 m year?1. Conditions favourable for our model of abnormally pressured beds appear common in sedimentary basins. Large salinity gradients associated with clay beds have previously been attributed to membrane effects, but flow patterns associated with abnormally pressured beds appear more robust in the presence of heterogeneity and discontinuities than membrane effects. Calculations suggest that thick underpressured shales in the Alberta basin may have allowed ancient evaporatively concentrated brines to be preserved beneath a vigorous topography‐driven flow system over the last 60 My. In the Illinois basin, drained overpressured beds may have limited solute transport across the New Albany shale until approximately 250 Ma. It is unlikely, however, that overpressures could have persisted long enough to explain concentration gradients observed in the modern basin. These gradients may instead reflect relatively recent halite dissolution above the New Albany shale.  相似文献   

17.
The Krafla geothermal system is located in Iceland's northeastern neovolcanic zone, within the Krafla central volcanic complex. Geothermal fluids are superheated steam closest to the magma heat source, two‐phase at higher depths, and sub‐boiling at the shallowest depths. Hydrogen isotope ratios of geothermal fluids range from ?87‰, equivalent to local meteoric water, to ?94‰. These fluids are enriched in 18O relative to the global meteoric line by +0.5–3.2‰. Calculated vapor fractions of the fluids are 0.0–0.5 wt% (~0–16% by volume) in the northwestern portion of the geothermal system and increase towards the southeast, up to 5.4 wt% (~57% by volume). Hydrothermal epidote sampled from 900 to 2500 m depth has δD values from ?127 to ?108‰, and δ18O from ?13.0 to ?9.6‰. Fluids in equilibrium with epidote have isotope compositions similar to those calculated for the vapor phase of two‐phase aquifer fluids. We interpret the large range in δDEPIDOTE and δ18OEPIDOTE across the system and within individual wells (up to 7‰ and 3.3‰, respectively) to result from variable mixing of shallow sub‐boiling groundwater with condensates of vapor rising from a deeper two‐phase reservoir. The data suggest that meteoric waters derived from a single source in the northwest are separated into the shallow sub‐boiling reservoir, and deeper two‐phase reservoir. Interaction between these reservoirs occurs by channelized vertical flow of vapor along fractures, and input of magmatic volatiles further alters fluid chemistry in some wells. Isotopic compositions of hydrothermal epidote reflect local equilibrium with fluids formed by mixtures of shallow water, deep vapor condensates, and magmatic volatiles, whose ionic strength is subsequently derived from dissolution of basalt host rock. This study illustrates the benefits of combining phase segregation effects in two‐phase systems during analysis of wellhead fluid data with stable isotope values of hydrous alteration minerals when evaluating the complex hydrogeology of volcano‐hosted geothermal systems.  相似文献   

18.
Calcite veins at outcrop in the Mesozoic, oil‐bearing Wessex Basin, UK, have been studied using field characterization, petrography, fluid inclusions and stable isotopes to help address the extent, timing and spatial and stratigraphic variability of basin‐scale fluid flow. The absence of quartz shows that veins formed at low temperature without an influence of hydrothermal fluids. Carbon isotopes suggest that the majority of vein calcite was derived locally from the host rock but up to one quarter of the carbon in the vein calcite came from CO2 from petroleum source rocks. Veins become progressively enriched in source‐rock‐derived CO2 from the outer margin towards the middle, indicating a growing influence of external CO2. The carbon isotope data suggest large‐scale migration of substantial amounts of CO2 around the whole basin. Fluid inclusion salinity data and interpreted water‐δ18O data show that meteoric water penetrated deep into the western part of the basin after interacting with halite‐rich evaporites in the Triassic section before entering fractured Lower and Middle Jurassic rocks. This large‐scale meteoric invasion of the basin probably happened during early Cenozoic uplift. A similar approach was used to reveal that, in the eastern part of the basin close to the area that underwent most uplift, uppermost Jurassic and Cretaceous rocks underwent vein formation in the presence of marine connate water suggesting a closed system. Stratigraphically underlying Upper Jurassic mudstone and Lower Cretaceous sandstone, in the most uplifted part of the basin, contain veins that resulted from intermediate behaviour with input from saline meteoric water and marine connate waters. Thus, while source‐rock‐derived CO2 seems to have permeated the entire section, water movement has been more restricted. Oil‐filled inclusions in vein calcite have been found within dominant E‐W trending normal faults, suggesting that these may have facilitated oil migration.  相似文献   

19.
Deep sedimentary basins are complex systems that over long time scales may be affected by numerous interacting processes including groundwater flow, heat and mass transport, water–rock interactions, and mechanical loads induced by ice sheets. Understanding the interactions among these processes is important for the evaluation of the hydrodynamic and geochemical stability of geological CO2 disposal sites and is equally relevant to the safety evaluation of deep geologic repositories for nuclear waste. We present a reactive transport formulation coupled to thermo‐hydrodynamic and simplified mechanical processes. The formulation determines solution density and ion activities for ionic strengths ranging from freshwater to dense brines based on solution composition and simultaneously accounts for the hydro‐mechanical effects caused by long‐term surface loading during a glaciation cycle. The formulation was implemented into the existing MIN3P reactive transport code (MIN3P‐THCm) and was used to illustrate the processes occurring in a two‐dimensional cross section of a sedimentary basin subjected to a simplified glaciation scenario consisting of a single cycle of ice‐sheet advance and retreat over a time period of 32 500 years. Although the sedimentary basin simulation is illustrative in nature, it captures the key geological features of deep Paleozoic sedimentary basins in North America, including interbedded sandstones, shales, evaporites, and carbonates in the presence of dense brines. Simulated fluid pressures are shown to increase in low hydraulic conductivity units during ice‐sheet advance due to hydro‐mechanical coupling. During the period of deglaciation, Darcy velocities increase in the shallow aquifers and to a lesser extent in deeper high‐hydraulic conductivity units (e.g., sandstones) as a result of the infiltration of glacial meltwater below the warm‐based ice sheet. Dedolomitization is predicted to be the most widespread geochemical process, focused near the freshwater/brine interface. For the illustrative sedimentary basin, the results suggest a high degree of hydrodynamic and geochemical stability.  相似文献   

20.
Understanding the hydrocarbon migration system in the sub‐surface is a key aspect of oil and gas exploration. It is well known that conventional 3D seismic data contains information about hydrocarbon accumulations. Less known is the fact that 3D seismic data also contains information about hydrocarbon migration paths in the form of vertical noise trails. A method has been developed to highlight vertical noise trails in seismic data semi‐automatically, using assemblies of directive multi‐trace seismic attributes and neural network technology. The results of this detection method yield valuable information about the origin of hydrocarbons, about migration paths from source to prospect and about leakage or spillage from these prospects to shallow gas pockets or to the sea bed. Besides, the results reveal the sealing quality of faults, provide information on overpressure and whether prospects are charged or not. All these aspects are useful information for basin modelling studies and for an increased understanding of the petroleum system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号