首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This study primarily proposes new equivalent damping ratio equations based on Jacobsen’s approach for displacement-based seismic design of pile-supported wharves to account for wharf configurations and soil-pile interaction. It is found that Pivot hysteresis model and Masing rule can accurately capture nonlinear behavior of concrete and steel wharves, respectively. To verify applicability of proposed equations, analyses were conducted to three typical wharves to make a comparison of maximum displacements obtained from nonlinear time-history analyses and substitute structure method with various damping equations. The verification reveals proposed equations are better than those in practice for their higher precision in determining displacements.  相似文献   

2.
Several advantages of yielding dampers in controlling seismic energy have attracted the attention of many researchers in designing new buildings and retrofitting existing structures. In recent decades, various shapes and substances of such dampers have been used in engineering structures and their behavioral features, including the energy dissipating capacities, have been assessed. In this article, a novel method is presented to obtain the design relationship of two types of yielding elliptical dampers in terms of their selected geometric properties, i.e. distance between the shear diaphragms or virtual diameter and thickness. In addition, two different elliptical-shaped steel dampers equipped with the shear diaphragms are proposed and modeled using the finite element software ABAQUS and their performances are investigated. Then, 30 and 25 models, respectively, of the first and second types are studied using pushover analysis. The designed dampers considering the proposed relationships are used in two chevron braced steel frames placed between the bracing and the beam. Due to their desirable efficiency in energy dissipation and increase in the equivalent viscous damping of the frame, better efficiency is achieved in the modified damper with easier fabrication.  相似文献   

3.
Nonlinear time domain site response analysis is used to capture the soil hysteretic response and nonlinearity due to medium and large ground motions. Soil damping is captured primarily through the hysteretic energy dissipating response. Viscous damp-ing, using the Rayleigh damping formulation, is often added to represent damping at very small strains where many soil models are primarily linear. The Rayleigh damping formulation results in frequency dependent damping, in contrast to experiments that show that the damping of soil is mostly frequency independent. Artificially high damp-ing is introduced outside a limited frequency range that filters high frequency ground motion. The extended Rayleigh damping formulation is introduced to reduce the over-damping at high frequencies. The formulation reduces the filtering of high frequency motion content when examining the motion Fourier spectrum. With appropriate choice of frequency range, both formulations provide a similar response when represented by the 5% damped elastic response spectrum.

The proposed formulations used in non-linear site response analysis show that the equivalent linear frequency domain solution commonly used to approximate non-linear site response underestimates surface ground motion within a period range relevant to engineering applications. A new guideline is provided for the use of the proposed formulations in non-linear site response analysis.  相似文献   

4.
A simple mathematical expression is proposed to estimate spectra reduction damping factors for seismic design of systems with viscous dampers. The expression is obtained from the ratios between ordinates of uniform hazard spectra associated with two different return intervals (50 and 125 years), corresponding to sites with different types of soil within the Valley of Mexico. The expression proposed depends on the dominant period of the soil, and on both the vibration period and damping ratio of the structural system. Values of the damping factors proposed here are comparable to those recommended by different authors and seismic design building codes.  相似文献   

5.
The concept of equivalent linearization of nonlinear system response as applied to direct displacement-based design is evaluated. Until now, Jacobsen's equivalent damping approach combined with the secant stiffness method has been adopted for the linearization process in direct displacement-based design. Four types of hysteretic models and a catalog of 100 ground motion records were considered. The evaluation process revealed significant errors in approximating maximum inelastic displacements due to overestimation of the equivalent damping values in the intermediate to long period range. Conversely, underestimation of the equivalent damping led to overestimation of displacements in the short period range, in particular for effective periods less than 0.4 seconds. The scatter in the results ranged between 20% and 40% as a function of ductility. New equivalent damping relations for four structural systems, based upon nonlinear system ductility and maximum displacement, are proposed. The accuracy of the new equivalent damping relations is assessed, yielding a significant reduction of the error in predicting inelastic displacements. Minimal improvement in the scatter of the results was achieved, however. While many significant studies have been conducted on equivalent damping over the last 40 years, this study has the following specific aims: (1) identify the scatter associated with Jacobsen's equivalent damping combined with the secant stiffness as utilized in Direct Displacement-Based Design; and (2) improve the accuracy of the Direct Displacement-Based Design approach by providing alternative equivalent damping expressions.  相似文献   

6.
The capacity spectrum method of ATC-40 uses the secant period as the equivalent period of equivalent linear systems. Therefore, it results in a direct graphical comparison. The maximum inelastic displacement and acceleration demands of structures can be simultaneously obtained from the intersection of the demand and capacity diagrams. However, for evaluation of existing structures, the demands need to be determined through iterations since the equivalent period and damping of the equivalent linear systems currently available are both a function of the (displacement) ductility ratio, which is unknown and is the target of evaluation. In addition, the equivalent damping used in the capacity spectrum method is independent of periods of vibration. It may lead to poor estimations of maximum responses especially for short-period systems. This article proposes two equivalent linear systems based on the secant period to estimate the maximum displacement and acceleration responses of existing structures. Both the recommended equivalent period and damping are defined by the strength ratio (elastic lateral strength/yield lateral strength), rather than the ductility ratio. Because the strength ratio of existing structures is a known parameter, the maximum displacement and acceleration responses of these structures can be determined without iterations. Besides, effects of periods of vibration on the equivalent linear systems are also included in this study. The equivalent damping is derived from statistical analyses for bilinear single-degree-of-freedom (SDOF) systems with different periods of vibration, strength ratios and post-yield stiffness based on 72 earthquake ground motions recorded on firm sites. Procedures and examples for applications of the proposed equivalent linear systems on nonlinear static analysis procedures are also provided.  相似文献   

7.
Abstract

The economy and reliability of steel-framed buildings in seismic areas depend basically on the hysteretic behaviour of its individual components, such as members and joints. With reference to the latter, despite the recent semi-continuous frame approach (which appears generally very convenient for the design of low- and medium-rise steel buildings), the present state of knowledge does not allow for a complete understanding of the behaviour and the low-cycle fatigue life of beam-to-column connections under dynamic loads.

This paper presents a criterion for the definition of the low-cycle fatigue strength of steel connections, and proposes two approaches for the design of steel frames in seismic zones via the assessment of the fatigue damage, which is evaluated alternatively on the basis of either the ductility or of the load carrying capacity.  相似文献   

8.
We introduce a direct Displacement-Based Design methodology for glued laminated timber portal frames with moment-resisting doweled joints. We propose practical expressions to estimate ultimate target displacement and equivalent viscous damping, and we demonstrate that these expressions provide prior values that are close to those obtained a posteriori using a more refined model. Applied to case studies, the method yields base-shear forces lower than those obtained using the force-based approach of Eurocode 8. This is due to the high dissipation capacity of the specific connection technology, which apparently is conservatively accounted for in the q-factor of Eurocode 8.  相似文献   

9.
The aim of this study was to propose an extension of the displacement-based assessment procedure for infilled reinforced concrete (RC) frames. Two fundamental steps of the displacement-based approach were studied: the determination of the equivalent viscous damping and the definition of the limit-state displacement profile. The proposed criteria were derived by examining the results of two different numerical investigations regarding the nonlinear seismic response of single- and multi-story infilled RC frames. Lastly, the effectiveness of the method was verified through comparisons, in terms of displacement demand, with the results of nonlinear dynamic analyses.  相似文献   

10.
ABSTRACT

This article aims to disclose that the deformation and damages of the one-way straight mortise-tenon (OWSMT) joint, the key force transmission connection of traditional wood buildings, lead to a significant reduction in structural safety of ancient timber structure. For this purpose, the damage of mortise joint in practical engineering wassimulated by controlling the gap and width between mortise and tenon. A total of 23 groups of scaled 1:2 OWSMT joint specimens were fabricated and tested subjected to cyclic loadings, and the hysteretic curves of OWSMT joint with different damage degrees were obtained. Through skeleton curves, stiffness degradation curves, and equivalent viscous damping curves of the OWSMT joint, the seismic performance of damaged wood joints was quantitatively analyzed. The results show that, with the increase in the gap between the tenon and the mortise, the slip between them became increasingly obvious, the fullness and peak of the hysteresis curve gradually decreased, the gradient of the skeleton curve also dropped, and both the stiffness degradation curve and the equivalent viscous damping curve are gradually reduced. The research findings shed new light on the seismic assessment of aging timber buildings.  相似文献   

11.
In this paper, the results of an experimental program dealing with the ultimate behavior of bolted beam-to-column connections under cyclic actions are presented. The design criteria adopted for tested specimens are discussed in detail, aiming to point out how the ultimate behavior can be governed by properly strengthening the components for which yielding has to be prevented. To this scope, the component approach is adopted as a design tool for component hierarchy criteria. The aim of the paper is the investigation of the actual possibility of extending the component approach to the prediction of the cyclic response of beam-to-column joints. To this scope, the attention has been focused on the possibility to evaluate the overall energy dissipation capacity starting from the energy dissipation of the single joint components, provided that they are properly identified and their cyclic behavior is properly measured.  相似文献   

12.
In this article, one of the procedures proposed in literature for the design of viscous dampers to be inserted in existing buildings is examined and extended to 3D eccentric buildings. The proposed procedure has been verified through a case study characterized by a six-story RC building. Both plan-symmetric and plan-asymmetric configurations have been considered for comparisons. The effect of considering the plan-asymmetry in the design has been studied. Moreover, also the importance of considering the higher modes has been investigated. The effectiveness of the design procedure has been then evaluated through the comparison with nonlinear dynamic analyses.  相似文献   

13.
In recent years, current seismic codes started contemplating the design of structures with passive energy dissipating devices. One important issue for the rational seismic design of these devices and the structure that contains them is the formulation of numerical methods to estimate their design seismic forces. From the study of the dynamic response of single-degree-of-freedom systems subjected to accelerograms recorded in Mexico during the last two decades, expressions to estimate the strength reduction factor that should be used to reduce the elastic design strength spectra for 5 percent damping, to establish the design seismic forces for structures having different combinations of plastic and viscous energy dissipating capacities, are formulated.  相似文献   

14.
A very useful tool for the preliminary design of structures is the elastic demand spectrum that can be used in the capacity spectrum method. A pseudo-acceleration relationship has to be assumed when constructing a demand spectrum. This assumption results in large errors for long period structures with large damping ratios and the conventional demand spectra require a substitute elastic structure. In the present study, the conventional demand spectra are extended to bi-linear models. Pseudo-acceleration is still assumed but results in acceptably small errors, when a constant viscous damping coefficient for a single-degree-of-freedom (SDF) structure is calculated from the tangent stiffness and the damping ratio is set at 5% in both elastic and yield phases. For nonlinear structures, tangent stiffness dependency of damping force could be acceptable because energy absorption is primarily the result of structural nonlinear deformation. To extend the conventional demand spectra to a bi-linear model, effective period calculated from the secant stiffness has to be used. The use of effective period introduces no approximation because the peak displacement of the SDF structure is computed from nonlinear analysis in the time domain. The method presented in this study is also valid if damping coefficient proportional to initial elastic spectra is used. In this case, the pseudo-acceleration is defined as the base shear coefficient that is required to produce the peak displacement of the SDF structure in a static manner. We present demand spectra of bi-linear models for a number of near-source records from large earthquakes, and spectral ratios of two horizontal components. The effects of different types of ground motion on the response reduction factor due to inelastic deformation are investigated.  相似文献   

15.
To fulfill a displacement-based design or response prediction for nonlinear structures, the concept of equivalent linearization is usually applied, and the key issue is to derive the equivalent parameters considering the characteristics of hysteretic model, ductility level, and input ground motions. Pinching hysteretic structures subjected to dynamic loading exhibit hysteresis with degraded stiffness and strength and thus reduced energy dissipation. In case of excitation of near-fault earthquake ground motions, the energy dissipation is further limited due to the short duration of vibration. In order to improve the energy dissipation capability, viscous-type dampers have been advantageously incorporated into these types of structures. Against the viscously damped pinching hysteretic structure under the excitation of near-fault ground motions, this study aims to develop a seismic response estimation method using an equivalent linearization technique. The energy dissipation of various hysteretic cycles, including stationary hysteretic cycle, amplitude expansion cycle, and amplitude reduction cycle, is investigated, and empirical formulas for the equivalent damping ratio is proposed. A damping modification factor that accounts for the near-fault effect is introduced and expanded to ensure its applicability to structures with damping ratios less than 5%. An approach for estimating the maximum displacement of a viscously damped pinching hysteretic structure, in which the pinching hysteretic effect of a structure and the near-fault effect of ground motions are considered, is developed. A time history analysis of an extensive range of structural parameters is performed. The results confirm that the proposed approach can be applied to estimate the maximum displacement of a viscously damped pinching hysteretic structure that is subjected to near-fault ground motions.  相似文献   

16.
Cable-stayed bridges exhibit unique responses under a strong motion. It is partly due to the complexity in their damping mechanism. Recently, the benchmark problem of a cable-stayed bridge was developed to clarify the effectiveness of various seismic control strategies. Due to the new development of magnetorheological dampers, the application of variable dampers in bridges becomes possible. In this study, the effectiveness of the nonlinear viscous damping force scheme and the two-step friction damping force scheme are investigated. It is found that the nonlinear viscous damping force scheme is effective to control the response of the cable-stayed bridge with less demand for the damping force capacity of a damper. In addition, the two-step friction damping force scheme shows the improvement over conventional friction damping because the energy dissipation of a damper can be increased.  相似文献   

17.
The design focus for a buckling-restrained braced frame (BRBF) is that the buckling-restrained braces (BRBs) dissipate most of the seismic energy while the main frame retains a degree of elastic stiffness under a major earthquake. An elastic displacement spectrum based design method is presented in this article, which can directly determine the sectional area of the BRBs. The yield displacement in the roof of the main frame is taken as the target displacement under a major earthquake. An elastic displacement design spectrum is used to solve the target period of the BRBF. To validate this method, a six-story buckling-restrained braced steel frame is designed using the proposed method, and a series of nonlinear response history analyses (RHAs) are performed to verify the design result. The example shows that the required BRB area can be simply and accurately determined by the proposed method. The error between the given target displacement and the RHA results is 4.0% and 21.3% for BRBFs designed with BRB yield strength of 235 Mpa and 100 Mpa, respectively.  相似文献   

18.
A series of eccentrically braced frames (EBF) are designed and subjected to nonlinear analyses to highlight ambiguities and differences in current seismic design provisions for EBF structures. This provides motivation to implement better guidance for the checking of local displacement demand considerations and move towards a displacement-based design approach. A recently proposed direct displacement-based design (DDBD) procedure for EBFs is then described and further developed in this article through the calibration of a spectral displacement reduction factors that relate the displacement of an inelastically responding structure to that of the equivalent linear representation used in the DDBD of EBFs. Such an expression is calibrated as part of this study using an experimentally validated numerical model also proposed here for the EBF links such that the actual hysteretic behavior of the links is well represented. The DDBD guidelines are applied to EBF systems from 1–15 stories in height and their performance is verified via nonlinear dynamic analyses using two different sets of design spectrum compatible ground motions. The results of the study indicate the robustness of the proposed DDBD method in limiting the interstory drifts to design limits for a variety of EBF systems with short links, thus demonstrating that the proposed DDBD method is an effective tool for seismic design of EBFs.  相似文献   

19.
This article presents a Lyapunov-based analysis/redesign approach for the optimal seismic design of added viscous dampers in 3D framed structures. The optimal solution minimizes the total added damping while the mean squared drifts at the peripheral frames are constrained to allowable values under a white noise excitation. The proposed approach uses Lyapunov equation for analysis and an optimality criterion that dictates “fully stressedness” for redesign. Hence, the design process is actually comprised of an iterative solution of a set of algebraic equations. Three examples are solved so as to highlight the advantages of the proposed approach — a 3-story shear frame, an 8-story, 3-bay by 3-bay setback frame, and a 10-story industrial frame.  相似文献   

20.
It has been generally accepted that steel moment-resisting frames behave in a ductile manner under seismic excitations. However, during the 1994 Northridge earthquake in California, weld fractures at the beam-to-column connections occurred in many steel buildings. Such brittle failures obviously precluded the traditional ductile-behaviour assumption and had a significant effect on the responses of steel moment-resisting frames. In this paper, the performance of a friction damping system for retrofitting steel moment-resisting frames was investigated under long-distance earthquakes. For this purpose, the 1985 Mexico City (SCT), the 1995 Bangkok, or the 1977 Romania ground motions, all scaled to a peak ground acceleration of 0.17 g, were considered in this study. Responses of the building under the 1940 El Centro N-S component were also included for comparison. The results of the study show that a friction damping system can reduce the seismic responses significantly. The devices can also prevent the total collapse and joint failures of the building equipped with friction dampers, while the one without dampers would collapse, even under a peak ground acceleration of only 0.17 g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号