首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Damage of nonstructural components during past seismic events was shown to be not only a critical threat to life safety in extreme cases but also led to substantial reduction of functionality of buildings and other facilities. Because of the complex construction of nonstructural and architectural components, current standards provide only limited guidance for the seismic design. Suspended ceiling systems are among the less understood important nonstructural/architectural components in buildings for which design standards provide limited guidance. To understand the dynamic behavior of suspended ceiling systems, a series of full scale shake table tests of 20 ft × 53 ft and 20 ft × 20 ft ceiling systems were conducted at the Structural Engineering and Earthquake Simulation laboratory (SEESL) at University at Buffalo (UB). For the full scale dynamic testing, a new test frame providing a continuous suspended ceiling area of 1,060 ft2 was constructed on the tandem shake tables and was equipped with an open-loop shake table compensation procedure. The combined designs of the physical frame and of the shake table motion controllers allowed simulating the required floor/roof motion according to ICC-ES AC156 standard at the roof of the test structure. Various test configurations were selected in order to determine the influence of different system conditions and the effects or efficiency of various protective systems required by the current standard ASTM E580 for seismic design. Based on the test data and the failure mechanisms observed, damage states are defined, and fragility curves are developed. The results of the fragility analysis show that a ceiling system becomes more vulnerable as (a) it is subjected to multi-directional input motions, (b) heavier tiles are installed, (c) the size of a ceiling area increases, and (d) lateral restraints are not installed. In addition, simplified numerical models that can capture the special behavior of ceiling systems are developed and presented in a companion paper. This paper presents the experimental study of large area suspended ceiling systems involving test setup and configurations, test motions generated by a unique control system, and basic lessons gained from the experiments.  相似文献   

2.
In recent years, current seismic codes started contemplating the design of structures with passive energy dissipating devices. One important issue for the rational seismic design of these devices and the structure that contains them is the formulation of numerical methods to estimate their design seismic forces. From the study of the dynamic response of single-degree-of-freedom systems subjected to accelerograms recorded in Mexico during the last two decades, expressions to estimate the strength reduction factor that should be used to reduce the elastic design strength spectra for 5 percent damping, to establish the design seismic forces for structures having different combinations of plastic and viscous energy dissipating capacities, are formulated.  相似文献   

3.
Seismic damage to fire sprinkler piping systems is not only caused by inertial forces or interstory drifts, but also by impact with surrounding objects. The collision of constituents of piping systems with nearby objects increases the chance of damage to the piping itself and to adjacent objects. In this study, the probability of seismic damage to fire sprinkler systems due to impact is quantified by obtaining seismic fragility parameters for large diameter pipes passing through walls and floors, as well as small diameter pipes that typically interact with suspended ceilings. The results of two shaking table experiments conducted at the University of Nevada, Reno and E-Defense test facility, and a high-fidelity numerical model of a hospital piping system are used to evaluate the displacement demands. Piping interaction fragility curves are generated based on clearances between adjacent objects and pipes. The probability of piping interactions and damage to piping systems subjected to different levels of peak floor acceleration is compared for different clearances. It is found that the probability of damage due to impact is comparable with the probability of exceeding other limit states, like the leakage in fittings, when a 1 in or 2 in gap is provided around large and small diameter pipes, respectively.  相似文献   

4.
It is well known that the soil-structure interaction (SSI) changes the dynamic response of a structure supported on flexible soil. The analysis of optimally controlled SSI systems has certain difficulties due to the nature of the SSI and the optimal control problem. In this paper, a two-step iteration-based numerical algorithm is proposed to handle optimally controlled SSI systems under earthquakes. First, the optimal control forces are obtained by using a fixed-base system. Then, the optimal control forces are converted to the frequency domain by the Fourier transform technique to be used in the equations of the SSI system. The lateral displacement and the rocking of the foundation are obtained from the equations of the SSI system containing the optimal control forces in the frequency domain. The lateral displacement and rocking of the foundation are then converted to the time domain by the inverse Fourier transform technique, and the lateral accelerations and the rocking accelerations of the foundation are obtained by the forward finite difference method. During the second step, the optimal control forces are calculated again by using the lateral acceleration and the rocking acceleration of the foundation along with the earthquake ground motion. Using the method explained above, the optimal control forces obtained in the time domain are used in the equations of the soil-structure system from which the behavior of foundation and structure is obtained. In the final section of the paper, a numerical study is conducted for a controlled structure supported on flexible soil.  相似文献   

5.
The development of alternative solutions for precast concrete buildings based on jointed ductile connections has introduced innovative concepts in the design of lateral-load resisting frame and wall systems. Particularly efficient is the hybrid system, where precast elements are connected via post-tensioning techniques and self-centring and energy dissipating properties are adequately combined to achieve the target maximum displacement with negligible residual displacements. In this contribution, the concept of hybrid system is extended to bridges as a viable and efficient solution for an improved seismic performance when compared with monolithic counterparts. Critical discussion on the cyclic behaviour of hybrid systems, highlighting the most significant parameters governing the response, is carried out.

The concept of a flexible seismic design (displacement-based) of hybrid bridge piers and systems is proposed and its reliability confirmed by quasi-static cyclic (push-pull) and nonlinear time-history analyses based on lumped plasticity numerical models.  相似文献   

6.
A series of eccentrically braced frames (EBF) are designed and subjected to nonlinear analyses to highlight ambiguities and differences in current seismic design provisions for EBF structures. This provides motivation to implement better guidance for the checking of local displacement demand considerations and move towards a displacement-based design approach. A recently proposed direct displacement-based design (DDBD) procedure for EBFs is then described and further developed in this article through the calibration of a spectral displacement reduction factors that relate the displacement of an inelastically responding structure to that of the equivalent linear representation used in the DDBD of EBFs. Such an expression is calibrated as part of this study using an experimentally validated numerical model also proposed here for the EBF links such that the actual hysteretic behavior of the links is well represented. The DDBD guidelines are applied to EBF systems from 1–15 stories in height and their performance is verified via nonlinear dynamic analyses using two different sets of design spectrum compatible ground motions. The results of the study indicate the robustness of the proposed DDBD method in limiting the interstory drifts to design limits for a variety of EBF systems with short links, thus demonstrating that the proposed DDBD method is an effective tool for seismic design of EBFs.  相似文献   

7.
Basin‐wide sediment transport affects estimates of basin sediment yield, which is a fundamental scientific issue in drainage basin studies. Many studies have been conducted to examine erosion and deposition rates in drainage networks. In this study, we proposed a new approach using grain‐size standard deviation model of sedimentary samples from different geomorphological units for numerical analysis and paleo‐climate interpretation in the Shiyang River drainage basin, arid China. 1043 sedimentary samples were obtained from the upper reaches, the midstream alluvial plain and the terminal lake area; chronological frames were established based on 58 radiocarbon ages. Grain‐size standard deviation model was introduced to examine sediment components according to grain‐size and transport forces. In addition, transient paleo‐climate simulations, including the Community Climate System Model version 3 and the Kiel models, were synthesized, as well as the results from PMIP 3.0 project, to detect the long‐term climate backgrounds. Totally, we found four major common components, including fine particulates (<2 μm), fine silt (2–20 μm), sandy silt (20–200 μm), coarse sand (>200 μm), from basin‐wide sedimentary samples. The fine particulates and fine silt components exist in all the sedimentary facies, showing long‐term airborne aerosol changes and its transport by suspended load. There are some differences in ranges of sandy silt and coarse sand components, due to lake and river hydrodynamics, as well as the distance with the Gobi Desert. Paleo‐climate simulations have shown that the strong Asian summer monsoon during the transition of the Last Deglaciation and Holocene was conducive to erosion and transport of basin‐wide suspended load, also enhancing sediment sorting effects due to strong lake hydrodynamics. Our findings provide a new approach in research of long‐term basin‐wide sediment transport processes.  相似文献   

8.
Previous research has proposed the Linked Column Frame (LCF) as a lateral load-resisting system capable of providing rapid return to occupancy for buildings impacted by moderate earthquake events and collapse prevention in very large events. The LCF consists of flexible moment frames (MF) and linked columns (LC), which are closely spaced dual columns interconnected with bolted links. The linked columns (LC) are designed to limit seismic forces and provide energy dissipation through yielding of the links, while preventing damage to the moment frame under certain earthquake hazard levels. The proposed design procedure ensures the links of the linked column yield at a significantly lower story drift than the beams of the moment frame, enabling design of this system for two distinct performance states: rapid repair, where only link damage occurs and quick link replacement is possible; and collapse prevention, where both the linked column and moment frame may be damaged.

Here, the seismic performance factors for the LCF system, including the response modification factor, R, the system over-strength factor, Ω0, and the deflection amplification factor, Cd, are established following the procedures described in FEMA P695 [2009]. These parameters are necessary for inclusion of the system in the building code. This work describes the development of archetype structures, numerical models of the LCF systems, incremental dynamic analyses, and interpretation of the results. From the results, it is recommended that R, Ω0, and Cd values of 8, 3, and 5.5 be used for seismic design of the LCF system. A height limit of 35 m (115ft) is recommended at this time as taller LCFs are not considered in this study.  相似文献   

9.
The role of soil-structure interaction (SSI) in the seismic response of structures is reex-plored using recorded motions and theoretical considerations. Firstly, the way current seismic provisions treat SSI effects is briefly discussed. The idealised design spectra of the codes along with the increased fundamental period and effective damping due to SSI lead invariably to reduced forces in the structure. Reality, however, often differs from this view. It is shown that, in certain seismic and soil environments, an increase in the fundamental natural period of a moderately flexible structure due to SSI may have a detrimental effect on the imposed seismic demand. Secondly, a widely used structural model for assessing SSI effects on inelastic bridge piers is examined. Using theoretical arguments and rigorous numerical analyses it is shown that indiscriminate use of ductility concepts and geometric relations may lead to erroneous conclusions in the assessment of seismic performance. Numerical examples are presented which highlight critical issues of the problem.  相似文献   

10.
Hubs are critical elements of telecommunication and transportation networks because they play a vital role in mass traffic movement. The design of more reliable networks in hub-and-spoke systems is a critical issue because current networks, particularly many commercial Internet backbones, are quite vulnerable. In hub-and-spoke-type topologies, any malfunction at a hub may cause degradation of the entire network's ability to transfer flows. This article presents a new hub location problem, termed the reliable p-hub location problem , which focuses on maximizing network performance in terms of reliability by locating hubs for delivering flows among city nodes. Two submodels, the p-hub maximum reliability model and the p-hub mandatory dispersion model, are formulated. Based on hypothetical and empirical analyses using telecommunication networks in the United States, the relationship between network performance and hub facility locations is explored. The results from these models could give useful insights into telecommunication network design.  相似文献   

11.
12.
Regional design, long a backbone for spatial planning, even if under other names, has become topical again for two reasons – as a key strategy and as a key tool in spatial management. This is due to several reasons. New conditions of urbanization that result from the convergence of several factors highlight the need for spatial strategy formation and application at supra-metropolitan scales. These new conditions include globalization, climate change, booming urban population, increased mobility and interconnectivity, and new infrastructure technologies. These forces driving urbanization today and into the future play out at the urban scale, which is increasingly encompassed in the city-region. The solutions to the impacts and problems that these forces cause must be dealt with by a strategic urbanism at a scale that matches. This scale of urbanism can be denoted as regional design. To justify these claims and to understand the origins of regional design and its relevance today and into the future, the master strokes in its history are presented next. After that, we discuss current concepts and practices in regional design. In conclusion, we offer answers to the question: why a resurgence of regional design?  相似文献   

13.
ABSTRACT

Modeling unreinforced masonry walls, subjected to seismic loads applied normal to their plane, has received much attention in the past. Yet, there is a general lack of conformance with regard to what aspects of seismic response a computational model should reflect. Boundary conditions are certainly an important aspect, as the response can involve two-way bending or just one-way bending and, in the second case, along vertical or horizontal directions. In this respect, flexural restraint of wall intersections can be significant in addition to size and placement of openings. Moreover, in-plane damage can modify the boundary conditions and the overall out-of-plane performance. Proper modeling of actions is also relevant, as they can be a result of distortions imposed upon wall elements and/or inertial forces along the span of a wall. Axial forces can markedly affect the out-of-plane response of the wall, particularly vertical compressive forces, which can enhance out-of-plane strength. The outcome of static verifications can be more conservative than that of dynamic analyses, but the latter are much more complex to carry out. These topics are discussed with reference to previous research, observations in the field and in the laboratory, as well as numerical analyses on three-dimensional models.  相似文献   

14.
J. M. SHARP JR    M. SHI 《Geofluids》2009,9(4):263-274
Although studies of free convection commonly focus on highly permeable strata, but numerical analyses indicate that density-driven free convection may also occur in heterogeneous low-permeability strata. Traditional Rayleigh number criteria are overly conservative in predicting thermohaline convection in these systems; so, numerical models are used to make inferences on the process. Simulations with stochastic realizations of permeability fields show that dense plumes can take preferential pathways to sink through generally low-permeability strata; patch analysis using percolation theory shows that the threshold permeability for the onset of free convection can be as low as 10−16 m2 even with a mean permeability of 10−18 m2. Threshold permeability for the percolation pathways decreases with increasing concentration gradient, vertical correlation length and the mean and variance of the permeability. The connectedness of relatively high-permeability zones is important in initiating and controlling plume fingers of free convection in both single-layer and sand-shale sequence models. Permeable units above and below are conducive to free convection through intervening low-permeability strata if buoyancy gradients exist. This heterogeneity is on scales that are difficult to sample by drilling and too localized to be simulated in regional models but may be significant in solute transport in these systems.  相似文献   

15.
The Intergovernmental Panel on Climate Change (IPCC) report, initiated in 1988, is complete, was debated at the Second World Climate Conference in November, 1990 and was subsequentty submitted to the United Nations General Assembly. IPCC: (i) asserted the reality of humanity's disturbance of the natural climate system; (ii) demanded studies to improve our knowledge of processes vulnerable to climatic changes: and (iii) called for policy responses to mitigate and adapt to these changes. Two fundamental issues are: how will global climatic change affect natural resources and human population and how will the impetus towards policy responses, particularly greenhouse gas emission reduction treaties, affect industry, the economy and trade? A necessary first step in the highly desirable and geographical aspiration of striving to link numerical climate modelling to the predictions of socioeconomic systems is increased awareness and improved understanding of current physical and social models. In this paper I review the status of numerical climatic modelling especially as it pertains to scenarios of the effects of human-enhanced greenhouse warming. These projections are of futures which are themselves the result of socio-economic predictions. Development of appropriate adaptive strategies depends crucially upon improved simulation of the continental near-surface climate and on improved spatial resolution of climate models by at least two orders of magnitude. Such increased resolution is likely to demand a thousandfold increase in computing power. The physical results of global climatic change are likely to be less significant than the social and economic effects resulting from international agreements on emission reduction Recent shifts in international research and policy responses place today's studies of global climatic change firmly at the focus of human-environment interactions and hence at the core of modern geography.  相似文献   

16.
ISR Editorial     
Abstract

The so called ‘glass ceiling’ has been defined by the (now defunct) Glass Ceiling Commission as ‘invisible, artificial barriers that prevent qualified individuals from advancing within their organisation and reaching full potential’. I have recently examined the research literature on this phenomenon and discovered not only that the associated imagery is very powerful, but that the principal message, with only a few exceptions, is that there is a shortfall of women compared to men in top jobs, and that therefore a glass ceiling must be operating to hold them back. In this article I argue the view that the glass ceiling perpetuates a notion which persuades women to expect to be unfairly treated. I develop this theme by considering male versus female attributes, evidence for male and female job satisfaction, the steadily rising participation of women at management levels, and women's aspirations. Some special consideration is given to women in science, engineering, and technology. Finally, I discuss ways forward in terms of non-interventionist measures such as the use of role models, mentoring, and networking, since the non-competitive and cooperative aspects of these initiatives appeal particularly to women and have proved to be successful in encouraging them to fulfil their potential.  相似文献   

17.
A new robust design methodology to control the seismic performance of asymmetric structures equipped with a Single Tuned Mass Damper (STMD) is presented in this article. This design approach aims to control the seismic response of such systems by reducing both flexible-and stiff-edge maximum displacement. The dynamic problem has been investigated in the state space representation showing that the TMD works as a closed-loop feedback control action. A synthetic index to estimate the seismic performance of the main system has been defined by using H norm. Wide-ranging parametric numerical experimentation has been carried out to obtain design formulae for the STMD in order to minimize such a performance index. These formulae allow for a simple design of STMD position and stiffness to optimally control both translational and rotational motion components, whereas two mass devices are generally considered to improve the seismic performance of asymmetric structural systems The effectiveness and efficiency of the obtained design formulae have been tested by investigating the dynamic behavior of the asymmetric structure after being subjected to different recorded seismic inputs.  相似文献   

18.
Using representative numerical models of eight code-designed steel moment-resisting frame buildings and several ground motions, time-history analyses are performed and a critical evaluation of Peak Horizontal Floor Acceleration (PHFA) demands is conducted. The frames are modeled alternatively as linear and nonlinear systems to isolate the effect of building nonlinearity on PHFA. In most cases, PHFA is reduced when nonlinear behavior of a building is considered; however, in some cases, significant amplification of PHFA is observed. Results from the numerical study provide insight into the trend of modal response modification factors presented taking ground motion spectral shape into account.  相似文献   

19.
The objective of the present work is to examine advantages and drawbacks of different types of isolation systems, when seismic isolation is used as a protection strategy against damage to internal equipment and contents. The starting point of the study is the big experimental program of table tests on reduced-scale R/C structural models, carried out within the MANSIDE (Memory Alloys for New Seismic Isolation DEvices) project. Seven identical l:3.3-scaled, 3-storey frames were tested, including two fixed-base models and four base-isolated models with different isolation systems, namely: (1) rubber isolators, (2) steel-hysteretic system and (3), re-centring SMA (Shape Memory Alloy) system. In this study the internal equipment is regarded as an elastic single degree of freedom, with 2% equivalent viscous damping. Therefore, the capability of fixed-base and base-isolated models with different isolation systems to protect light secondary systems is evaluated by comparing the floor response spectra obtained from the storey accelerations recorded during shaking table tests. Three different PGA's are considered, about 0.15g, 0.3g and 0.5g, respectively. All the shaking table tests are also simulated with an accurate numerical model, to validate and better understand the experimental results. It is found that each type of isolation system reduces considerably the seismic effects on internal equipments in wide frequency regions. However, tuning effects may arise in specific frequency ranges, corresponding to the first mode in structures equipped with quasi-elastic (rubber) isolation systems, and to higher modes in structures equipped with elasto-plastic (steel) and nonlinear re-centering (SMA) isolation systems.  相似文献   

20.
We report new archaeological excavations from northern Australia revealing part of a charcoal design likely to be c. 28,000 years old (and chrono-stratigraphically constrained within the period 15,600–45,600 cal BP) on a small rock slab fallen from the ceiling at the rockshelter of Nawarla Gabarnmang in Jawoyn country, Arnhem Land. This represents the oldest confirmed pictograph in Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号