首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
故宫灵沼轩是我国最早建造的钢铁-砌体组合结构之一,具有重要的历史、艺术和科学价值。为了评估灵沼轩在地震作用下的结构安全状况,建立了灵沼轩结构的三维有限元模型,并对其进行了动力特性和地震时程分析,得出了其固有频率、模态振型、地震位移响应和地震应力响应。结果表明:灵沼轩整体结构布置对称性较高,扭转刚度较大,对抗震较为有利;在8度多遇地震、设防地震和罕遇地震作用下,灵沼轩的金属结构部分及砌体结构部分的顶点位移和层间位移角均符合现行规范要求,砌体结构部分的第三主应力响应均小于材料的抗压强度,不存在压溃风险。在8度多遇地震和设防地震作用下,砌体结构部分的第一主应力响应均小于材料的抗拉强度,结构不会发生拉裂。但在8度罕遇地震作用下,砌体结构的部分位置拉应力超过材料的抗拉强度,这些位置存在开裂危险。最后,综合动力特性和抗震性能分析的结果,提出了灵沼轩的抗震加固建议。  相似文献   

2.
In order to evaluate the seismic risk of transportation networks, it is necessary to develop a methodology that integrates the probabilities of occurrence of seismic events in a region, the vulnerability of the civil infrastructure, and the consequences of the seismic hazard to the society, environment, and economy. In this article, a framework for the time-variant seismic sustainability and risk assessment of highway bridge networks is presented. The sustainability of the network is quantified in terms of its social, environmental, and economic metrics. These include the expected downtime, expected energy waste and carbon dioxide emissions, and the expected loss. The methodology considers the probability of occurrence of a set of seismic scenarios that reflect the seismic activity of the region. The performance of network links is quantified based on individual bridge performance evaluated through fragility analyses. The sustainability and risk depend on the damage states of both the links and the bridges within the network following an earthquake scenario. The time-variation of the sustainability metrics and risk due to structural deterioration is identified. The approach is illustrated on a transportation network located in Alameda County, California.  相似文献   

3.
A new seismic intensity parameter to estimate damage in buried pipelines due to seismic wave propagation is proposed. This parameter depends on the peak ground velocity (PGV) and the peak ground acceleration (PGA). It is shown that PGV2/PGA is related to displacement, a parameter directly related to ground strain, which is the main cause of buried pipeline damage. For the case of Mexico City, this parameter exhibits higher correlation with damage than PGA or PGV alone. Finally, we presented intensity-damage relations for the Mexico City's primary water system using PGV2/PGA as the measure of seismic intensity.  相似文献   

4.
We describe the formulation and application of an integrated general regional seismic loss assessment (RSLA) method for buildings in seismic regions. An efficient method for RSLA is valuable for engineers involved in city planning, risk management, and insurance dealings. In contrast to previously reported methods, the framework presented herein is hazard-based and utilizes a regional rapid seismic hazard deaggregation tool that allows regional assessment to be conducted more efficiently. The proposed technique is implemented as an example to assess general regional seismic loss in Los Angeles County for a ground motion hazard with 10% probability of exceedance in 50 years.  相似文献   

5.
This is a reconnaissance report on the damage to bridges during the 2008 Wenchuan, China, earthquake. Site investigation was conducted by the authors on August 10–14, 2008. Presented is a detailed discussion of the damage to 12 bridges as well as possible damage mechanisms. Characteristics of two near-field ground accelerations and Chinese seismic bridge design practices are also presented. An investigation of the damage finds insufficient intensity of seismic design force, inadequate structural detailing for enhancing the ductility capacity, and an absence of unseating prevention devices.  相似文献   

6.
The column members of steel moment frames undergo high axial forces as well as inelastic rotations during a severe seismic event. The boundaries of these simultaneous structural demands on the columns of special moment frames have been investigated in this research. Based on the results of this investigation, dual cyclic loading protocols have been developed that represent both axial force and lateral deformation demands. Contrary to other loading scenarios that have been implemented in previous studies on steel columns, the loading protocols developed in this study include simultaneous axial and lateral loading cycles with varying amplitudes. The level of axial forces and story drifts tolerated by the columns of some typical Special Moment Frames (SMFs) has been investigated through performing nonlinear dynamic analyses. These frames have been selected with several configurations and different number of stories. The results of the nonlinear dynamic analyses have been processed to assess cumulative and instantaneous seismic demands on the columns of the chosen typical frames. Subsequently, dual cyclic loading protocols have been developed such that exerting these loading protocols on individual steel columns can result in structural effects close to the general seismic demands assessed in this study. Two separate dual loading protocols have been introduced for Design Earthquake (DE) and Maximum Considered Earthquake (MCE) seismic intensity levels.  相似文献   

7.
The assessment of the seismic performance depends on the choice of the earthquake Intensity Measure (IM). During the past years many IMs, which take into account not only earthquake characteristics but also structural information, have been proposed. However, no consensus on which IM is the best predictor of the seismic response exists. Along these lines, the objective of this paper is to present the various developed scalar structure-specific seismic IMs and the problems associated with their use in practice, so that the engineer may become familiar with them and their implications in the context of Performance-Based Earthquake Engineering.  相似文献   

8.
Seismic bridge design codes require that bridge piers designed according to prescribed design rules should attain specified multiple seismic performance objectives. However, design codes do not explicitly require checking the attainment of specified performance objectives for designed bridge piers. In this article, seismic performance levels have been correlated with engineering damage parameters. A checking method for multiple seismic performance objectives of bridge piers has been outlined and validated with experimental results. The application of the method has been demonstrated by checking the performance of a bridge pier designed according to a code provision for a wide range earthquake ground motions.  相似文献   

9.
This article investigates the seismic performance of one-story reinforced concrete structures for industrial buildings. To this aim, the seismic response of two structural prototypes, a cast-in-situ monolithic frame and a precast hinged frame, is compared for four different levels of translatory stiffness and seismic capacity. For these structures an incremental nonlinear dynamic analysis is performed within a Monte Carlo probabilistic simulation. The results obtained from the probabilistic analysis prove that precast structures have the same seismic capacity of the corresponding cast-in-situ structures and confirm the overall goodness of the design criteria proposed by Eurocode 8, even if a noteworthy dependency of the actual structural behavior from the prescribed response spectrum is pointed out.

The experimental verification of these theoretical results is searched for by means of pseudodynamic tests on full-scale structures. The results of these tests confirm the overall equivalence of the seismic behavior of precast and cast-in-situ structures. Moreover, two additional prototypes have been designed to investigate the seismic behavior of precast structures with roof elements placed side by side. The results of these further tests show that an effective horizontal diaphragm action can be activated even if the roof elements are not connected among them, and confirm the expected good seismic performance of these precast systems. Finally, the results of the experimental tests are compared with those obtained from nonlinear structural analyses. The good agreement between numerical and experimental results confirms the accuracy of the theoretical model and, with it, the results of the probabilistic investigation.  相似文献   

10.
The seismic assessment of a road network depends largely on the characterization of the fragility of its bridge components. The accuracy of bridge seismic demand estimates and the use of proper intensity measures (IM) will significantly influence such task. The available literature has mainly focused on buildings or a limited number of bridge configurations and IMs, which may not be representative for bridge portfolio assessment studies. In this paper, the correlation quality between a larger pool of traditional and innovative IMs and the nonlinear dynamic response of typical Italian RC bridges is investigated to identify the best-performing IMs.  相似文献   

11.
A full-scale shake table test is conducted to assess the seismic response characteristics of a 23 m high wind turbine. Details of the experimental setup and the recorded dynamic response are presented. Based on the test results, two calibrated beam-column finite element models are developed and their characteristics compared. The first model consists of a vertical column of elements with a lumped mass at the top that accounts for the nacelle and the rotor. Additional beam-column elements are included in the second model to explicitly represent the geometric configuration of the nacelle and the rotor. For the tested turbine, the experimental and numerical results show that the beam-column models provide useful insights. Using this approach, the effect of first-mode viscous damping on seismic response is studied, with observed experimental values in the range of 0.5–1.0% and widely varying literature counterparts of 0.5–5.0%. Depending on the employed base seismic excitation, damping may have a significant influence, reinforcing the importance of more accurate assessments of this parameter in future studies. The experimental and modeling results also support earlier observations related to the significance of higher modes, particularly for the current generation of taller turbines. Finally, based on the outcomes of this study, a number of additional experimental research directions are discussed.  相似文献   

12.
Viscous dampers have widely proved their effectiveness in mitigating the effects of the seismic action upon building structures. In view of the large impact that use of such dissipative devices is already having and would most likely have soon in earthquake engineering applications, this article presents a practical procedure for the seismic design of building structures equipped with viscous dampers, which aims at providing practical tools for an easy identification of the mechanical characteristics of the manufactured viscous dampers which allow to achieve target levels of performances. Selected numerical applications are developed with reference to simple, but yet relevant, cases.  相似文献   

13.
Seismic damage to fire sprinkler piping systems is not only caused by inertial forces or interstory drifts, but also by impact with surrounding objects. The collision of constituents of piping systems with nearby objects increases the chance of damage to the piping itself and to adjacent objects. In this study, the probability of seismic damage to fire sprinkler systems due to impact is quantified by obtaining seismic fragility parameters for large diameter pipes passing through walls and floors, as well as small diameter pipes that typically interact with suspended ceilings. The results of two shaking table experiments conducted at the University of Nevada, Reno and E-Defense test facility, and a high-fidelity numerical model of a hospital piping system are used to evaluate the displacement demands. Piping interaction fragility curves are generated based on clearances between adjacent objects and pipes. The probability of piping interactions and damage to piping systems subjected to different levels of peak floor acceleration is compared for different clearances. It is found that the probability of damage due to impact is comparable with the probability of exceeding other limit states, like the leakage in fittings, when a 1 in or 2 in gap is provided around large and small diameter pipes, respectively.  相似文献   

14.
This paper is aimed at determining the effects of the soil characterization on the seismic input to use for seismic assessment. Three different soil profiles have been assembled to represent the stratigraphies found through a proper experimental investigation, carefully described, and alternative seismic site response analyses have been performed. The surface spectra obtained from the seismic site response analysis (SRA) are very different from each other, thus evidencing the importance of carefully describing soil stratigraphy. Furthermore, the comparison among the surface records found for different return periods has shown a limited sensitivity of the SRA to the seismic intensity.  相似文献   

15.
Tehran, the capital of Iran, with millions of inhabitants, has been affected several times by historical and recent earthquakes that confirm the importance of seismic hazard assessment for the area. The main objective of this article is to present a probabilistic procedure to construct time series compatible with the source-path and site reflecting the influence of different magnitude events at different distances that may occur during a specified time period. A Monte Carlo approach is used to generate numerous synthetic catalogs for the evaluation of the probabilistic seismic hazard in greater Tehran over hard rock site for a return period of 475 years. The disaggregation of the seismic hazard is carried out to identify hazard-dominating events and to associate them with one or more specific faults, rather than a given distance. The stochastic finite-fault technique based on region specific seismic parameters is used to generate time series of earthquake scenario.  相似文献   

16.
The seismic damage evaluated through Nonlinear Time-History Analyses is significantly affected by the response quantity chosen to represent the seismic responses. Starting from the theory of tolerance regions, a generic upper limit of the seismic responses is proposed. The method is applied to a reinforced concrete structure subjected to different record combinations. For each considered damage index and record combination, the upper limit damage is compared with the average value suggested by seismic codes. The proposed method yields a higher seismic damage than the average response and an increase in the damage indices as the number of records decreases.  相似文献   

17.
2015尼泊尔地震对加德满都谷地的世界文化遗产造成不可估量的损失。为了探究谷地文化遗产震害整体分布特征,对谷地世界文化遗产建筑的震害状况开展实地调查,划分了三类文化遗产震害等级标准,形成了六处世界文化遗产的震害图并对其进行统计分析,加德满都、帕坦和巴德岗三处杜巴广场震后保存基本完好的文化遗产建筑占各自总数的39.5%、53.3%、50%,斯瓦扬布纳特寺、昌谷纳拉扬寺和博达哈大佛塔主体保存基本完好,附属建筑不同程度地破坏。加德满都、帕坦和巴德岗三处杜巴广场地层的松软沉积层放大地震效应使建筑严重破坏,斯瓦扬布纳特寺、昌谷纳拉扬寺震害主要受地形特征影响。考察成果为我国同类遗产建筑的抗震防护提供参考。  相似文献   

18.
This paper focuses on the study of simulations for spatially variable seismic underground motions in U-shaped canyons. First, a canyon ground cross-coherence function based on commonly used coherence function models of flat terrain, is deduced and presented. To further obtain the underground cross-coherence function, a mathematical expression, including its specific deduction process for describing the relationship between coherence functions of multi-support ground and underground motions, is also given in detail and adopted. Then, the key factors (i.e. canyon underground power spectrum density and canyon underground coherence function) for simulating the spatially variable seismic underground motions are obtained by a two-step transferring method from flat-ground to underground soil. Furthermore, a program is coded for generating the spatially variable seismic underground motions. The effectiveness of the generated seismic motions is further verified. Finally, two numerical examples are taken to validate the proposed simulation approach, illustrating the specific characteristics of canyon coherence function. The analysis results show the apparent differences of the simulated seismic motions using the canyon coherence function from those using conventional coherence function models of flat terrain. The proposed approach provides some insights for anti-earthquake analysis of soil-structure interaction or underground structures in canyon topography.  相似文献   

19.
Different relations have been represented for the local damage index of structures to date, while the same application is defined for them as can be an indicator of relative sustained damage by the components or stories. Since different force-resisting systems subjected to the ground motions can behave differently, some well-known story damage indices are evaluated for the reinforced concrete frames with regards to their operation during nonlinear time history analysis. Two general concepts of story damage determination are selected for this purpose. SDI is a modal-based story damage index, which is calculated by the modal frequency and mode shapes. The behavior of this local index is evaluated during the seismic excitations. The results were compared with Park-Ang and modal flexibility story damage indices. Based on analytical study on seismic responses of some RC frames subjected to a suit of earthquake records a new story damage index has been developed. It has been derived from a simple global damage equation (softening index) using a normalized ratio of inelastic story shear to its drift. A procedure is recommended to use the proposed equation without any requirement to perform nonlinear dynamic analysis, which can significantly reduce the computational efforts. Distribution of the new represented SDI along the structural height shows a good agreement with damaged state of the RC frames after seismic excitations.  相似文献   

20.
Shape memory alloys (SMAs) are a class of materials that have unique properties, including Young's modulus-temperature relations, shape memory effects, superelastic effects, and high damping characteristics. These unique properties, which have led to numerous applications in the biomedical and aerospace industries, are currently being evaluated for applications in the area of seismic resistant design and retrofit. This paper provides a critical review of the state-of-the-art in the use of shape memory alloys for applications in seismic resistant design. The paper reviews the general characteristics of shape memory alloys and highlights the factors affecting their properties. A review of current studies show that the superelastic and high-damping characteristics of SMAs result in applications in bridges and buildings that show significant promise. The barriers to the expanded use of SMAs include the high cost, lack of clear understanding of thermo-mechanical processing, dependency of properties on temperature, and difficulty in machining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号