首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
An efficient and simplified plane beam-column joint model that can describe the strength deterioration, stiffness degradation, and pinching effect was developed for the nonlinear analysis of non-seismically detailed reinforced concrete frames. The proposed beam-column joint model is a super-element consisting of eight spring components and one panel zone component, representing the bond-slip mechanism of the longitudinal reinforcement and the shear deformation mechanism of the joint concrete core region, respectively. In order to represent the dynamic response at the system level, the elastic constitutive law is applied to the eight connector springs, while the Bouc-Wen-Baber-Noori (BWBN) model is adopted to describe the hysteretic behavior of the panel zone component. For the implementation of the finite element analysis, the algorithmically consistent tangent of the BWBN model is derived as a uni-axial constitutive model, while the initial stiffness of the panel zone component is determined by the concrete compression strut assumption. The accuracy and efficiency of the proposed beam-column joint model were calibrated at both the component and structural levels by comparing the simulated results with the experimental data for non-seismically detailed joint sub-assemblages and a reinforced concrete plane frame.  相似文献   

2.
Seismic assessment of gravity dams is generally carried out using time history analyses. Scaling of the motions is commonly used; however, in contrast to buildings, the performance of scaling procedures at predicting the mean and reducing the dispersion in engineering demand parameters (EDPs) is not known. The main goal of this study is to assess the performance of different scaling procedures in predicting seismic demands on dams. The performance regarding the prediction of the damage and the required number of motions for effective analysis was investigated. The results show that techniques commonly used for moment frames should not readily be applied to these structures.  相似文献   

3.
The present article focuses on a nonlinear static procedure (NSP) for a multi-story asymmetric frame building with regular elevation subjected to bi-directional ground motion. In this procedure, two simplified models—an equivalent single-story model and an equivalent single-degree-of-freedom (SDOF) model—are used to predict the peak response of multi-story asymmetric buildings. The peak response is predicted through pushover analysis of an equivalent single-story model considering the effect of bi-directional excitations and an estimation of the nonlinear response of equivalent SDOF models. The predicted results are compared with the nonlinear dynamic analysis results, and satisfactory predictions can be obtained by the proposed procedure.  相似文献   

4.
Four different boundary conditions consisting of fixed nodes, motion of roller only in the z or the x direction, and equivalent motion of two side boundaries were applied with a finite element code to simulate seismic behavior of two foundation conditions consisting of dry loose and dense sands. Comparing numerical results with physical model tests indicates that data obtained from the finite element code when considering soil nonlinearity with a sand model based on the tij concept have acceptable agreements with those from dynamic centrifuge tests regardless of the boundary conditions. The results from the boundary conditions of roller in the x direction and equivalent motion of two side boundaries agree well with the experimental data in wave peaks. The two side boundary conditions also keep the ground middle undisturbed and provide the results that are similar to those obtained from the wave amplification experimental data. For numerical simulations of centrifuge model tests, the side boundary condition with roller in the x direction is recommended because of low computation time and high simulation quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号