首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seismic response of base-isolated benchmark building with variable sliding isolators like variable friction pendulum system (VFPS), variable frequency pendulum isolator (VFPI), and variable curvature friction pendulum system (VCFPS), along with conventional friction pendulum system (FPS), was studied under the seven earthquakes. The earthquakes are applied bi-directionally in the horizontal plane ignoring vertical ground motion component. The shear type base-isolated benchmark building is modeled as three-dimensional linear elastic structure having three degrees of freedom at each floor level. Time domain dynamic analysis of the benchmark building was carried out with the help of constant average acceleration Newmark-Beta method and nonlinear isolation forces was taken care by fourth-order Runge-Kutta method. The base-isolated benchmark building is investigated for uniform isolation and hybrid isolation in combination with laminated rubber bearings through the performance criteria and time history response of important structural response parameters like floor accelerations, base displacement, etc. It is observed that variable sliding isolators performed better than conventional FPS due to their varying characteristic properties which enable them to alter the isolator forces depending upon their isolator displacements thus improves the performance of the structure. The VFPS efficiently controls large isolator displacements and VFPI and VCFPS improve super structural response on the cost of isolator displacement. It is also observed that the hybrid isolation is relatively better in comparison to the uniform isolation for the benchmark building.  相似文献   

2.
In order to promote the research and development on evaluating the seismic performance of structures, China State Construction Engineering Corporation (CSCEC) planned to construct a large-scale loading testing facility, the Multi-Function Testing System (MFTS). This facility can perform full-scale, real-time, 6-degree-of-freedom static and dynamic testing of rubber bearings and many types of structural components including long columns, shear walls and cross shape joints. The basic performances of the MFTS are a clearance of 9.1 m × 6.6 m × 10 m for specimen installation, maximum x-directional displacement 1500 mm, maximum y-directional velocity 1570 mm/s and maximum z-directional compressive load 108 MN. The system configuration and performance specifications of the MFTS are presented in this paper. The inverse kinematics model and the nonlinear model of the hydraulic servosystem of the MFTS are built. A modified feedback forward kinematics algorithm is developed for real-time control of the MFTS. Internal force characteristics of the loading system are analyzed. The internal force control method based on real-time solution of basis of internal force space is proposed for the system with large motion ranges. The motion controller combining position control loop and internal force control loop is developed. To meet the requirement of simultaneously imposing vertical compressive load and horizontal displacement, a mixed load and displacement controller is designed, where a direct force control loop is used to improve the response speed of the force control and reduce spatial dynamic coupling effects. Finally, a dynamic bearing testing is performed. The test results demonstrate that the system using the proposed controller has good abilities on position tracking, force balance, and load following.  相似文献   

3.
This study presents a new strategy for shake table control that uses direct acceleration feedback without need for displacement feedback. To ensure stability against table drift, force feedback is incorporated. The proposed control strategy was experimentally validated using the shake table at the Johns Hopkins University. Experimental results showed that the proposed control strategy produced more accurate acceleration tracking than conventional displacement-controlled strategies. This article provides the control architecture, details of the controller design, and experimental results. Furthermore, the impact of input errors in shake table testing on the structural response is also discussed.  相似文献   

4.
为研究预防性保护—减隔震技术在地面浮放石像文物中的应用,基于规范公式首先确定了佛像的隔震系数和支座刚度范围,进而采用时程分析程序对初选的减隔震支座进行了数值仿真验证,研究了高宽比为5.6的石佛像采用减隔震支座的可行性问题。研究结果表明:处于高烈度区浮放于地面的具有较大高宽比的石佛像文物的抗震性能存有隐患,科学合理的减隔震支座用于佛像等结构物可取得显著的减震效果。本研究所做石佛像减隔震设计及分析验证思路对类似工程有借鉴意义。  相似文献   

5.
The concept of base isolation is a century old, but application to civil engineering structures has only occurred over the last several decades. Application to light-frame wood buildings in North America has been virtually non existent with one notable exception. This article quantitatively examines issues associated with application of base isolation in light-frame wood building systems including: (1) constructability issues related to ensuring sufficient in-plane floor diaphragm stiffness to transfer shear from the superstructure to the isolation system; (2) evaluation of experimental seismic performance of a half-scale base-isolated light-frame wood building; and (3) development of a displacement–based seismic design method and numerical model and their comparison with experimental results. The results of the study demonstrate that friction pendulum system (FPS) bearings offer a technically viable passive seismic protection system for light-frame wood buildings in high seismic zones. Specifically, the amount and method of stiffening the floor diaphragm is not unreasonable, given that the inter-story drift and accelerations at the upper level of the tested building were very low, thus resulting in the expectation of virtually no structural, non structural, or contents damage in low-rise wood frame buildings. The nonlinear dynamic model was able to replicate both the isolation layer and superstructure movement with good accuracy. The displacement-based design method was proven to be a viable tool to estimate the inter-story drift of the superstructure. These tools further underscore the potential of applying base isolation systems for application to North America's largest building type.  相似文献   

6.
This paper presents an integrated passive-active (i.e. hybrid) system for seismic response control of a cable-stayed bridge. Since multiple control devices are operating, a hybrid control system could alleviate some of the restrictions and limitations that exist when each system is acting alone. Lead rubber bearings are used as passive control devices to reduce the earthquake-induced forces in the bridge and hydraulic actuators are used as active control devices to further reduce the bridge responses, especially deck displacements. In the proposed hybrid control system, a linear quadratic Gaussian control algorithm is adopted as a primary controller. In addition, a secondary bang-bang type (i.e. on-off type) controller according to the responses of lead rubber bearings is considered to increase the controller robustness. Numerical simulation results show that control performances of the integrated passive-active control system are superior to those of the passive control system and are slightly better than those of the fully active control system. Furthermore, it is verified that the hybrid control system with a bang-bang type controller is more robust for stiffness perturbation than the active controller with a μ-synthesis method, and there are no signs of instability in the over-all system whereas the active control system with linear quadratic Gaussian algorithm shows instabilities in the perturbed system. Therefore, the proposed hybrid protective system could effectively be used for seismically excited cable-stayed bridges.  相似文献   

7.
Elastomeric pad bearings are widely applied in short- to medium-span girder bridges in China, with the superstructure restrained by reinforced concrete (RC) shear keys in the transverse direction. Field investigations after the 2008 Wenchuan earthquake reveal that bearing systems had suffered the most serious damage, such as span falling, bearing displaced, and shear key failure, while the piers and foundations underwent minor damage. As part of a major study on damage mechanism and displacement control method for short- to medium-span bridges suffered in Wenchuan earthquake, a 1:4 scale, two-span bridge model supported on elastomeric pad bearings were recently tested on shake tables at Tongji University, Shanghai. The bridge model was subjected to increasing levels of four seismic excitations possessing different spectral characteristics. Two restraint systems with and without the restraint of RC shear keys were tested. A comprehensive analytical modeling of the test systems was also performed using OpenSees. The experimental results confirmed that for the typical bridges on elastomeric pad bearings without RC shear keys, the sliding effect of the elastomeric pad bearings plays an important role in isolation of ground motions and, however, lead to lager bearing displacement that consequently increases the seismic risk of fall of span, especially under earthquakes that contain significant mid-period contents or velocity pulse components. It is suggested from the test results that RC shear keys should be elaborately designed in order to achieve a balance between isolation efficiency and bearing displacement. Good correlation between the analytical and the experimental data indicates that the analytical models for the bearing and RC shear key as well as other modeling assumptions were appropriate.  相似文献   

8.
为了对金陵大报恩寺南北两块御碑遗址进行科学保护,首先通过有限元模拟对南北御碑遗址的现状结构性能进行分析,找出其在正常使用和地震作用时存在的安全隐患;然后根据计算分析结果及整体设计要求提出增设隔震支座的保护技术方案,采用有限元模拟计算对南北两块御碑遗址在增设隔震支座后的结构性能进行分析。计算结果表明:带有御碑的北碑的第一阶自振频率约为不带御碑的南碑的0.087;地震作用下,带有御碑的北碑最有可能破坏的部位是御碑,而不带御碑的南碑最有可能破坏的部位是龟趺头部。施加隔震支座后,南北两块御碑遗址结构的振动频率、最大主拉应力和最大主压应力均明显减小,在7度罕遇地震的情况下均不会发生破坏。研究结果对石碑的结构保护工程研究有参考价值。  相似文献   

9.
This article proposes a numerical investigation of the frictional heating developed in sliding bearings under high velocities and the influence of the relevant temperature rise on the mechanical characteristics of the device. A three-dimensional finite element model of the bearing is created and frictional heat generation is modelled through a thermal source inserted at the sliding surface of the bearing, with intensity dependent on the coefficient of friction, the contact pressure and the velocity. The friction value is adjusted step-by-step on surface temperature and velocity and used to update the thermal flux and the resisting force developed by the bearing. The numerical predictions of temperature histories and force–displacement loops are compared with the results of laboratory tests to validate the numerical approach. The procedure can help in preliminary studies for the selection of bearing materials accounting for their thermal stability and for the estimation of change of design properties of sliding isolation bearings due to frictional heating.  相似文献   

10.
This article presents a numerical study aimed at improving effectiveness of the isolation system of an actual building by adding magneto-rheological (MR) dampers that act in parallel to the existing rubber bearings (RB). The building itself is modeled with uniaxial elastic elements. Additional elements that include the RBs and the MR dampers are added at the base of the building and two different genetic algorithms are used to optimize operation of the MR dampers. Maximum acceleration and relative displacement at the top of the building are taken as the variables to be minimized. Records of destructive earthquakes are used as input. A comparison is made between the building responses with RB and the one with the additional control system.  相似文献   

11.
This study proposes a high-precision positioning correction method for multiple degree-of-freedom loading units in hybrid simulation. These loading units can impose inaccurate displacements to the specimens due to the elastic deformation at the reaction wall or connections. To compensate for these displacement errors, an online correction method adjusts the displacement command by the difference between the target and achieved displacement. This correction method also accompanies an accurate 6DOF monitoring system to detect the displacement errors. Two examples of hybrid simulation tests are provided to demonstrate the precise displacements attained on the specimens through this control method.  相似文献   

12.
For the seismic isolation of light structures, the use of laminated rubber bearings is neither economical nor, for most cases, technically suited. For the isolation of this type of structure a new system, consisting of steel balls rolling on rubber tracks, has been developed at TARRC (Tun Abdul Razak Research Centre).

This article presents the results of experimental tests carried out for the characterization of the behavior of this new device. A numerical model is also proposed that can be used to assess the seismic response of structures with this isolation system.

Comparison of the predictions of the numerical model with the experimental data shows that the model is adequate to perform the correct assessment of the seismic response of isolated structures. The results of the experimental campaign of shaking-table tests, as well as the numerical simulations, show that there is an effective reduction of the acceleration levels induced in the isolated structures.  相似文献   

13.
Hybrid simulation has emerged as a relatively accurate and efficient tool for the evaluation of structural response under earthquake loading. In conventional hybrid simulation the response of a few critical components is obtained by testing while the numerical module is assumed to follow an analytical idealization. Where there is a much larger number of analytical components compared to the experimental parts, the overall response may be dominated by the idealized parts hence the value of hybrid simulation is diminished. It is proposed to modify the material constitutive relationship of the numerical model during the test, based on the data obtained from the physically tested component. An approach based on genetic algorithms is utilized as an optimization tool to identify the constitutive relationship parameters used in updating the numerical model. The proposed model updating approach is verified through two analytical examples of steel and reinforced concrete frames. The results show the effectiveness of the updating process in minimizing the errors, compared to the assumed exact solution.  相似文献   

14.
Seismic resilience and continued operation of bridges after earthquakes are important seismic design criteria. A new seismic protection concept for integral bridge piers is explored that uses sliding bearings to separate the superstructure from the piers. The influence of sliding bearings on the seismic response of a representative 3-span integral highway bridge is investigated. With sliding bearings, the pier column shear force was limited to the bearing design friction force. Furthermore, the abutment ductility demands were found to be insensitive to the friction forces in the sliding bearings because the bridge displacement demands were controlled by the equal displacement rule.  相似文献   

15.
Hybrid simulation can provide significant advantages for large-scale experimental investigations of the seismic response of structures through collapse, particularly when considering cost and safety of conventional shake table tests. Hybrid simulation, however, has its own challenges and special attention must be paid to mitigate potential numerical and experimental errors that can propagate throughout the simulation. Several case studies are presented here to gain insight into the factors influencing the accuracy and stability of hybrid simulation from the linear-elastic response range through collapse. The hybrid simulations were conducted on a four-story two-bay moment frame with various substructuring configurations. Importantly, the structural system examined here was previously tested on a shake table with the same loading sequence, allowing for direct evaluation of the hybrid simulation results. The sources of error examined include: (1) computational stability in numerical substructure; (2) setup and installation of the physical specimen representing the experimental substructure; and (3) the accuracy of the selected substructuring technique that handles the boundary conditions and continuous exchange of data between the subassemblies. Recommendations are made regarding the effective mitigation of the various sources of errors. It is shown that by controlling errors, hybrid simulation can provide reliable results for collapse simulation by comparison to shake table testing.  相似文献   

16.
This article considers the use of actuator compensation in real-time hybrid simulation (RTHS) containing experimental substructures with complex control-structure-interaction (CSI). The existence of CSI in shake table testing is derived using theoretical relations. An infinite-impulse-response (IIR) compensator is developed to compensate for the shake table time delay as well as the effects of CSI. The efficacy of the IIR compensator is verified through numerical and experimental investigations of substructure shake table testing completed at Johns Hopkins University. IIR compensation is not limited to substructure shake table testing, and the concept is applicable to any RTHS that suffers from complex CSI.  相似文献   

17.
In this article, a Simulink simulation block with the finite element function is developed on the basis of S-function and implemented as the numerical substructure of real-time dynamic hybrid testing. Thereby, a real-time dynamic hybrid testing system coupling finite element calculation and shaking table testing is achieved. Using the developed system, a shear frame mounted on the soil foundation is tested, in which the shear frame is simulated as the physical model and the foundation is simulated as the finite element model with 132 degrees of freedom. Several cases of the dynamic behavior of soil-structure interaction are studied.  相似文献   

18.
Seismic isolation systems that mitigate seismic response are generally applied at the base of a building; however, architectural, functional, and cost considerations have motivated the application of isolation systems at inter-story locations. In this article, we systematically examine the effectiveness of inter-story isolation systems as a function of their location, and explore alternative approaches for selecting their properties. Single-story isolation systems are shown to be effective in mitigating force demands above the isolation system but less effective in mitigating forces below the isolation system. Finally, the practical aspects of designing an inter-story isolation system to accommodate light loads are discussed.  相似文献   

19.
The objective of the present work is to examine advantages and drawbacks of different types of isolation systems, when seismic isolation is used as a protection strategy against damage to internal equipment and contents. The starting point of the study is the big experimental program of table tests on reduced-scale R/C structural models, carried out within the MANSIDE (Memory Alloys for New Seismic Isolation DEvices) project. Seven identical l:3.3-scaled, 3-storey frames were tested, including two fixed-base models and four base-isolated models with different isolation systems, namely: (1) rubber isolators, (2) steel-hysteretic system and (3), re-centring SMA (Shape Memory Alloy) system. In this study the internal equipment is regarded as an elastic single degree of freedom, with 2% equivalent viscous damping. Therefore, the capability of fixed-base and base-isolated models with different isolation systems to protect light secondary systems is evaluated by comparing the floor response spectra obtained from the storey accelerations recorded during shaking table tests. Three different PGA's are considered, about 0.15g, 0.3g and 0.5g, respectively. All the shaking table tests are also simulated with an accurate numerical model, to validate and better understand the experimental results. It is found that each type of isolation system reduces considerably the seismic effects on internal equipments in wide frequency regions. However, tuning effects may arise in specific frequency ranges, corresponding to the first mode in structures equipped with quasi-elastic (rubber) isolation systems, and to higher modes in structures equipped with elasto-plastic (steel) and nonlinear re-centering (SMA) isolation systems.  相似文献   

20.
This article studies the performance of economic base isolators using tyres filled with elastomeric recycled materials. The research was conducted to analyze base isolators to be used in developing nations, where the application of conventional elastomeric rubber bearings due to economic reasons is limited.

The tested isolators are made of kart tyres filled with different recycled elastomeric materials and aggregates. Dynamic and static tests proved acceptable vertical to horizontal stiffness ratio of the bearings and shake table tests showed an excellent enhancement of the base isolated structural response compared to the corresponding fixed base structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号