首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data from the unique network of low latitude geomagnetic observatories in India extending from the dip equator to the northern focus of the Sq current system have shown a new type of Sq current distribution different from those associated with the normal or the counter electrojet currents. On 3 December 1985 both the horizontal as well as the vertical components of the geomagnetic field at Annamalainagar showed maximum values around the midday hours. The abnormal feature described seems to be rather a rare phenomenon. The solar daily range of H field is found to be fairly constant from the dip equator up to about 12° dip latitude, suggesting the complete absence of the equatorial enhancement of ΔH, typical of the equatorial electrojet. The cancellation of the equatorial electrojet is suggested to be caused by a westward flowing current system much wider than the conventional equatorial electrojet. This additional current system could be due to the excitation of certain tidal modes at low latitudes on such abnormal days.  相似文献   

2.
A least squares spectral analysis is used to investigate cyclic and seasonal changes of the harmonic coefficients of the solar daily and semi-diurnal variation over the 24 year interval from 1 January 1960 to 31 December 1983 at a single magnetic observatory (Dourbes, Belgium). As a preparation for the treatment of other long runs of observations a statistical method is presented to combine the output of the spectral and harmonic analyses of a group of stations. The annual means of the Fourier coefficients are significantly correlated with the solar cycle. The spectra show peaks at periods of 11 years, 1 year, 6 months and 27 days, which entails an important amplitude and phase modulation of the daily and semi-diurnal variation. No simple relationship between the peaks in the broad solar rotation band can be proposed.  相似文献   

3.
For a year of quiet solar-activity level, geomagnetic records from American hemisphere observatories located between about 0° and 30° north geomagnetic latitude were used to compare the annual and semiannual variations of the geomagnetic field associated with three separate contributions: (a) the quiet-day midnight level, MDT; (b) the solar-quiet daily variation, Sq; (c) the quiet-time lunar semidiurnal tidal variation, L(12). Four Fourier spectral constituents (24, 12, 8, 6 h periods) of Sq were individually treated. All three orthogonal elements (H, D and Z) were included in the study.The MDT changes show a dominant semiannual variation having a range of about 7 gammas in H and a dominant annual variation in Z having a range of over 8 gammas. These changes seem to be a seasonal response to the nightside distortions by magnetospheric currents. There is a slow decrease in MDT amplitudes with increasing latitude.The Sq changes follow the patterns expected from an equatorial ionospheric dynamo electrojet current system. The dominant seasonal variations occur in H having a range of over 21 gammas for the 24 h period and over 12 gammas for the 12 h period spectral components. The higher-order components are relatively smaller in size. The Sq(H) amplitudes decrease rapidly with increasing latitude. Magnetospheric contributions to the equatorial Sq must be less than a few per cent of the observed magnitude.The L(12) variation shows the ionospheric electrojet features by the dominance of H and the rapid decrease in amplitude with latitude away from the equator. However, the seasonal variation range of over 7 gammas has a maximum in early February and minimum in late June that is not presently explainable by the known ionospheric conductivity and tidal behavior.  相似文献   

4.
Variations of ionospheric Sq electric currents and fields caused by changes in electric conductivity due to changes in solar activity are studied using the International Reference Ionosphere (IRI) model. Calculations are made for R (sunspot number) = 35 and 200 on the assumption of constant (1, −2)mode tidal winds. It is shown that electric fields grow when solar activity is high, because the ratio of the conductivity in the F-region to that in the E-region increases. Currents in the F-region become stronger than those in the E-region, and nocturnal currents are not negligible when solar activity becomes high. F-region currents also play an important role in the westward currents on the high latitude side of the current vortex. The calculated geomagneticH component at the equator has a depression around 1600 LT for R = 35, while it decreases smoothly from 1100 LT to 1900 LT for R = 200. This difference is consistent with the observed geomagnetic field variation. The ratio of total Sq currents obtained by our simulation is about 3.5, which is a little larger than is found in the observed results.  相似文献   

5.
A model of the ionospheric current system valid at zones close to the geomagnetic equator, taking into account the contribution of neutral winds, is proposed. From this, the external magnetic field at ground is calculated. Also, ground records of the geomagnetic field variations at the Peruvian equatorial zone were separated into their external and internal contributions. Using an iterative process a local particular fitting was found by comparing the separated external field to the one calculated with the proposed model.  相似文献   

6.
Seasonal and solar cycle variations of the foF2 hysteresis magnitude are investigated. Data for the noon foF2 monthly medians for Slough (51.48°N, 0.57°W), the monthly means for the sunspot numbers, and for the geomagnetic activity index aa(N) for the northern hemisphere for the period 1933–1986, covering solar cycle from 17 to 21, are used. It is found that: (1) the greatest negative amplitudes of the foF2 hysteresis variation are near the equinoxes, and (2) the solar cycle average noon foF2 hysteresis magnitude is linearly correlated with the solar cycle average semi-annual geomagnetic amplitude of the aa-index. These results support the hypothesis that the foF2 hysteresis is due to the geomagnetic activity variation during the sunspot cycle.  相似文献   

7.
The feasibility of using the GOES satellite time signal is discussed for field stations at high Arctic latitudes. Results are presented for three ground stations on islands in the Canadian Archipelago. The stations range in latitude from 74 to 81° 30' N. At all locations, time code reception was found to be satisfactory and capable of providing accurate time reference for remote experiments. A simple design for a high gain helical antenna, used successfully at these latitudes for time signal reception, is also presented. The antenna, primarily intended for a small research field station, is portable, inexpensive and readily constructed.  相似文献   

8.
In our previous work a dominant coupling was shown between solar and geomagnetic activity, and surface air temperature of the QBO-west and east phases, respectively. The aim of the present study is to define ‘typical’ regions of positive and negative deviations from the long-term temperature average, to determine their magnitude and to find the conditions under which such a ‘typical’ distribution of temperature fields occurs.  相似文献   

9.
The solar cycle, seasonal and daily variations of the geomagnetic H field at an equatorial station, Kodaikanal, and at a tropical latitude station, Alibag, are compared with corresponding variations of the E-region ionization densities. The solar cycle variation of the daily range of H at either of the stations is shown to be primarily contributed to by the corresponding variation of the electron density in the E-region of the ionosphere. The seasonal variation of the ΔH at equatorial stations, with maxima during equinoxes, is attributed primarily to the corresponding variation of the index of horizontal electric field in the E-region. The solar daily variation of ΔH at the equatorial station is attributed to the combined effects of the electron density with the maximum very close to noon and the index of electric field with the maximum around 1030 LT, the resulting current being maximum at about 1110 LT. These results are consistent with the ionosphere E-region electron horizontal velocity measurements at the equatorial electrojet station, Thumba in India.  相似文献   

10.
A three-dimensional, time-dependent, MHD model of solar-disturbance-caused storms (Wu, 1993; Wu et al., 1996a) is used to predict the turning direction of the interplanetary magnetic field (IMF) at Earth. More explicitly, we examine the polarity of Bz caused by solar disturbances on the Sun. Three manifestations of solar disturbances, as studied by previous workers, are examined. Firstly, twenty-nine kilometric Type II events, associated (Cane, 1985) with geomagnetic storms, are studied within the context of our three-dimensional model. Then, an additional eleven long-duration X-ray events (LDEs) with radio fluxes greater than 100 solar flux units were examined; these events were not associated with interplanetary Type II events but were also associated (Cane, 1985) with geomagnetic storms. Finally, in situ interplanetary phenomena that caused ten large (Dst < −100 nT, the intensification of the storm) geomagnetic storm episodes (Tsurutani et al., 1988) near solar maximum are also studied via the Bz predictions of our 3D MHD model. The accuracy of these Bz turning-direction-predictions is found to be as follows: (1) for the kilometric Type II events, the model's prediction was successful for 26 of the 29 events studied; (2) 10/11 for the LDE events; and (3) 7/9 for the major geomagnetic storm events. The overall prediction accuracy of these three independent data sets is 43/49. Thus, consideration of these three independent data sets strongly suggests that the recipe proposed by the basic 3D MHD model may be valid for a zero-th order prediction scheme.  相似文献   

11.
12.
The vertical wind component is frequently used to determine the zero-velocity baseline for measurements of thermospheric winds by Fabry-Perot and other interferometers. For many of the upper atmospheric emission lines from which Doppler shifts are determined, for example for the OI 630 nm emission, available laboratory sources are not convenient for long-term use at remote automatic observatories. Therefore, the assumption that the long-term average vertical wind is zero is frequently used to create a baseline from which the Doppler shifts corresponding with the line-of-sight wind from other observing directions can then be calculated. A data base consisting of 1242 nights of thermospheric wind measurements from Kiruna (68°N, 20°E), a high-latitude site, has been analysed. There are many interesting short-term fluctuations of the vertical wind which will be discussed in future papers. However, the mean vertical wind at Kiruna also has a systematic variation dependent on geomagnetic activity, season and solar cycle. This means that the assumption that the average value of the vertical wind is zero over the observing period cannot be used in isolation to determine the instrument reference or baseline. Despite this note of caution, even within the auroral oval, the assumption of a zero mean vertical wind can be used to derive a baseline which is probably valid within 5 ms−1 during periods of quiet geomagnetic activity (Kp < 2), near winter solstice. During other seasons, and during periods of elevated geomagnetic activity, a systematic error in excess of 10 ms−1 may occur.  相似文献   

13.
The annual cycle of the strength of the geomagnetic horizontal field shows a local time dependence. Recent explanations for this invoke a ring current or magnetospheric source for the night-time, and an ionospheric source for the daytime annual waves, but the relative importance of each source has been uncertain. Harmonic dials of the annual waves in H from harmonic analysis at several local times and observatories are presented. Comparison with corresponding analyses of observed ionospheric winds supports the two source model. It is shown that both the magnetospheric and ionospheric components in H are 180° out of phase across the equator. But because of differing amplitudes of the two components across the equator, the net annual waves are about 160° out of phase across the equator.  相似文献   

14.
The variations of the diurnal range of the geomagnetic field with sunspot number and with magnetic activity was studied at mid and high latitude stations in the northern hemisphere at different seasons. The effect of increasing sunspot number is small at lower latitudes and increases with geomagnetic latitude, while the effect of increasing magnetic activity is to increase the range at all latitudes, very greatly at the higher geomagnetic latitudes.  相似文献   

15.
In this paper 16 geomagnetic storms in 1968–1978 recorded at 8 magnetic observatories located from polar to equatorial regions in the λ= 120°E longitudinal zone and its vicinity have been analysed. The horizontal component H traces of 27 h intervals have been sampled once every 1.5 min. The time sequences of the data thus obtained have been processed by the method of digital filtering and maximum entropy spectral analysis (MESA).The results of the analysis are compared with the associated solar wind parameters. It confirms that the geomagnetic disturbances are controlled by the solar wind in several ways, i.e. geomagnetic disturbances respond differently to various solar wind parameters or to the different ranges of them. The north-south component of the interplanetary magnetic field (IMF) Bz., the IMF latitude θ and the solar wind velocity V play the most important part in inducing geomagnetic storms.  相似文献   

16.
Within the last 7–8 years, there has been a substantial growth in our knowledge of the solar and interplanetary causes of geomagnetic storms at Earth. This review article will not attempt to cover all of the work done during this period. This can be found elsewhere. Our emphasis here will be on recent efforts that expose important, presently unanswered questions that must be addressed and solved before true predictability of storms can be possible. Hopefully, this article will encourage some readers to join this effort and perhaps make major contributions to the field.  相似文献   

17.
Abstract

Previous work has presented evidence that the Circle-Octagon Earthworks at Newark Ohio contain numerous features that are aligned to the lunar standstills (extreme rise and set points of the Moon). A Monte Carlo study of randomly constructed octagons is presented to investigate the statistical significance of this evidence. The study investigates the sensitivity of the statistics to a variety of plausible assumptions about the design of the earthworks, the capabilities of the builders, and the type and precision of the astronomical alignments. The results of the quantitative study establish that the statistical significance of the evidence for deliberate astronomical alignment over the entire range of plausible assumptions is far too high to be dismissed. The study reveals that the hypothesis of deliberate astronomical alignment predicts the otherwise unexplained shape of both octagonal earthworks constructed by the Hopewell Culture. The analysis compares the Newark dataset to hypothetical datasets which have no statistical significance, so that the difference is clearly established. We also show the evidence is consistent with the hypothesis that the astronomical alignments were established from observations made from high points where the effects of local horizons were negligible.  相似文献   

18.
AE indices have been used to investigate, at times of increased geomagnetic activity, the possibility of significant changes to both spread-F occurerence and hF values for 3 stations in equatorial latitudes. The investigation covered a sunspot minimum period. Furthermore, data for each of these parameters have been considered for both a pre-midnight period (interval A) and a post-midnight period (interval B). The use of the AE indices at 12 different times at 2 h intervals allows the measurement of the delay times, after increased geomagnetic activity, of any significant changes in the parameters being investigated.The results show that for interval A significant suppressions of spread-F occurrence are recorded at delay times of approximately 3 h and 9 h. These delays correspond to enhanced geomagnetic activity at local times of 1800 and 1200, respectively. Also, for interval A the hF variations suggest that hF is suppressed at times of spread-F suppression. For interval B spread-F occurrence seems to be controlled by two opposing effects. For several hours after enhanced geomagnetic activity spread-F occurrence increases significantly, followed by a sharp decline culminating in suppressed occurrence, again related to increased geomagnetic activity at 1800 local time for the maximum effect. Also, for interval B hF values lift abruptly a few hours after enhanced geomagnetic activity, followed by a gradual decline when delays of up to 20 h are considered. Further work on these delays may allow reliable short-term forecasting of some ionospheric behaviour in equatorial regions.  相似文献   

19.
20.
A solar dependence of wind parameters below 100 km was found by Sprenger and Schminder on the basis of long-term continuous ionospheric drift measurements (D1) in the l.f. range. For winter they obtained for the prevailing wind a positive correlation with solar activity and for the amplitude of the semi-diurnal tidal wind a negative correlation. Later on this result was confirmed by radar meteor wind measurements (D2) at Obninsk and further D1 measurements at KÜhlungsborn and Collm.However, after the years 1973–1974 a change in the behaviour of the zonal prevailing wind was observed. At this time we found a significant negative correlation with solar activity with an indication of a new change after 1983. This was obtained from D1 results in Collm and D2 results in Kühlungsborn not only for winter, but also for summer and even for annual averages. We conclude that this long-term behaviour points rather to a climatic variation with an internal atmospheric cause than to a direct solar control. The negative correlation with solar activity of the semi-diurnal tidal wind in winter remained unchanged (up to 1984) and also proved to be the same in summer and for annual averages. Recent satellite data of the solar u.v. radiation and the upper stratospheric ozone have shown that the possible variation of the thermal tidal excitation during the solar cycle amounts to only a few per cent. This is, therefore, insufficient to account for the 40–70% variation of the tidal amplitudes. Some other possibilities of explaining this result are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号