首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scintillation data from near Boston, U.S.A., and spread-F data from Argentine Islands, Antarctica are used to investigate the diurnal and seasonal variations of the simultaneous occurrence of medium-scale (~ 1–10 km) irregularities in the electron concentration in the F-region of the ionosphere at conjugate magnetic mid-latitude regions. It is found that these two stations near 52° CGL observe similar irregularity occurrence on ~75% of occasions at night when the data are considered on an hour by hour basis. During solstices, the relationship is dominated by occasions when irregularities are absent from both ends of the geomagnetic field lines; however, at equinoxes, periods of the simultaneous occurrence and non-occurrence of irregularities are approximately equally frequent. During periods of high geomagnetic activity, processes associated with the convection electric field and particle precipitation are likely to be important for the formation and transport of irregularities over these higher mid-latitude observatories. These processes are likely to occur simultaneously in conjugate regions. On days following geomagnetic activity, two processes may be operating that enhance the probability of the temperature-gradient instability, and hence lead to the formation of irregularities. These are the presence of stable auroral red arcs which occur simultaneously in conjugate locations, and the negative F-region storm effects whereby latitudinal plasma concentration gradients are increased; these effects are only similar in conjugate regions. During very quiet geomagnetic periods, F-region irregularities are occasionally observed, but seldom simultaneously at the two ends of the field lines. There is also an anomalous peak in the occurrence of irregularities over Argentine Islands associated with local sunrise in winter. No explanation is offered for these observations. Photo-electrons from the conjugate hemisphere appear to have no effect on irregularity occurrence.  相似文献   

2.
Slant-F traces on ionograms recorded by a modern ionosonde in a sunspot-minimum period have revealed the existence of field-aligned irregularities at times of spread-F occurrence. This appears to be the first investigation in a mid-latitude region around 36° (geomagnetic) to detect these irregularities at F2-region heights using an ionosonde. Although such traces were observed frequently near sunspot minimum they were seldom recorded for periods close to sunspot maximum. Also, for a specific spread-F event in August 1989, both the ionograms from the modern ionosonde and scintillations of 150 MHz transmissions from a Transit satellite indicate the existence in the ionosphere of periodic structures (period around 11 min). The scintillation recording also included rapidly fading signals indicative of small-scale structures. The satellite had a path close to the magnetic meridian which passed through the recording station (Brisbane, Australia). Because of the enhanced signal fluctuations in the scintillation recording on this occasion it seems likely (with the support of other evidence on the ionograms) that the small-scale structures present were field-aligned.  相似文献   

3.
The analysis investigates the base heights of the ionosphere (hF) when spread-F is recorded at Brisbane, Australia, for 2 separate periods, namely July and August 1966 when spread-F occurs frequently and September and October 1966 when the activity is much lower. It is found that for July and August there is little tendency for spread-F to occur preferentially when the base height is above the average for the period. However, for the September–October period, spread-F occurs more often (by a factor of 2 or 3 depending on the geomagnetic activity) when the base height is above rather than below the average height. Also, this analysis shows that the overall spread-F occurrence (for both periods investigated) decreased to some extent following increased geomagnetic activity. This suppressed activity in the hours following geomagnetic activity is confirmed by superposed-epoch analyses using K indices (for Macquarie Island) as controls. It is suggested that the results of all the analyses might be explained by invoking a transition height in the ionosphere (controlled by the neutral-particle density of the upper atmosphere). Ionospheric off-vertical reflections from above this height would be recorded as spread-F traces in this model. This transition height would be low in July and August when the neutral-particle density is low and higher in September and October. It is further proposed that changes in the neutral-particle density could also be associated with reduced spread-F activity following increased geomagnetic activity, as well as influencing the diurnal, annual and sunspot-cycle variations of spread-F occurrence in mid-latitudes.  相似文献   

4.
The signature of the stable auroral red arc (SAR arc) as it appears on ionograms is described. The key features are a very significant increase in the amount of spread-F and a reduction in the maximum plasma density compared with regions just equatorward and poleward of the SAR arc Identification of the SAR arc signature is made by using complementary data from the global auroral imaging instrument on board the Dynamics Explorer-1 satellite.At sunspot minimum there is a positive correlation between the occurrence of spread-F on ionograms from Argentine Islands, Antarctica (65°S, 64°W; L = 2.3) and magnetic activity. In contrast, at sunspot maximum there is a weak negative correlation when the K magnetic index is less than 6. but a significant increase in spread-F occurrence at K ⩾ 6. Detailed study of ionograms shows that there are two distinct regions where considerable spread-F is observed. These are the region where SAR arcs occur and the poleward edge of the mid-latitude ionospheric trough. They are separated by a region associated with the trough minimum, where comparatively little spread-F is seen. It is suggested that the movement of these features to lower latitudes with increasing magnetic and solar activity can explain the lack of correspondence between variations of spread-F occurrence as a function of magnetic activity at sunspot maximum compared with that at sunspot minimum at Argentine Islands.  相似文献   

5.
Experimental evidence using a fast-swept-gain technique on an ionosonde is presented to support the idea that mid-latitude spread-F irregularities are large-scale wave-like structures. Also,diurnal and annual distributions of spread-F occurrence at an equatorial station at times of low sunspot activity are shown to be similar to those found for mid-latitude stations. The sunspot-cycle variation of post-midnight spread-F occurrence is also found to be similar in the two latitude regions. The similarity of certain spread-F characteristics at both mid- and equatorial-latitude regions is discussed. An attempt is made to reconcile current spread-F models for these two latitude regions by proposing that the primary spread-F structures for equatorial regions are large-scale wave-like structures. It is further proposed that the small-scale plasma instabilities have a role of modifying the traces resulting from specular reflections from the large-scale structures.  相似文献   

6.
AE indices have been used to investigate, at times of increased geomagnetic activity, the possibility of significant changes to both spread-F occurerence and hF values for 3 stations in equatorial latitudes. The investigation covered a sunspot minimum period. Furthermore, data for each of these parameters have been considered for both a pre-midnight period (interval A) and a post-midnight period (interval B). The use of the AE indices at 12 different times at 2 h intervals allows the measurement of the delay times, after increased geomagnetic activity, of any significant changes in the parameters being investigated.The results show that for interval A significant suppressions of spread-F occurrence are recorded at delay times of approximately 3 h and 9 h. These delays correspond to enhanced geomagnetic activity at local times of 1800 and 1200, respectively. Also, for interval A the hF variations suggest that hF is suppressed at times of spread-F suppression. For interval B spread-F occurrence seems to be controlled by two opposing effects. For several hours after enhanced geomagnetic activity spread-F occurrence increases significantly, followed by a sharp decline culminating in suppressed occurrence, again related to increased geomagnetic activity at 1800 local time for the maximum effect. Also, for interval B hF values lift abruptly a few hours after enhanced geomagnetic activity, followed by a gradual decline when delays of up to 20 h are considered. Further work on these delays may allow reliable short-term forecasting of some ionospheric behaviour in equatorial regions.  相似文献   

7.
A summer, dayside, mid-latitude trough detected by a digital ionosonde located at Halley (76°S, 27°W, L = 4.2) is described. The trough is found to be present in the F2-region only and its movements are found to conform to known trough dynamics. The F1-layer shows a greater degree of development within the trough; slant type sporadic E reflections are present underneath the trough minimum. Satellite data from the northern hemisphere show a conjugate trough, with rapid ion flow occurring within it. Possible formation processes for the trough are examined. It is unlikely that depleted nightside plasma could have contributed to the trough. The trough is formed by the effect of enhanced F2 recombination rates combined with a differing solar production term for the plasma associated with the trough minimum and equatorial edge.  相似文献   

8.
This paper is concerned with the ionospheric irregularities produced during daylight hours in mid-latitude regions by medium-scale travelling ionospheric disturbances (MS-TIDs) as these disturbances pass overhead at a recording station. These irregularities are detected as ionogram trace distortions as well as by spread-F conditions particularly related to the second-hop reflections of HF radio waves. The existence of a significant amount of spread on second-hop ionogram traces during the passage of two particular MS-TIDs is illustrated and discussed. Experimental evidence is presented to suggest that, similar to the results for night-time spread-F, the occurrence of these daytime events is inversely related to variations in the neutral-particle density of the upper atmosphere, for the annual and sunspot-cycle variations. However, the results do not show a similar inverse relationship for the diurnal variation.  相似文献   

9.
Results are presented from a coordinated experiment involving scintillation observations using transmissions from NNSS satellites and simultaneous measurements with the EISCAT ionospheric radar facility. The scintillation was used to indicate the presence of sub-kilometre scale irregularities while the radar yielded information on the larger structures in the background ionosphere. Two examples are discussed in which localised patches of scintillation were observed at L-shells near ‘blob’ like enhancements in F-region ionisation density. Elevated electron temperatures indicated that the enhancements may have had their origins in soft particle precipitation. While structuring of the precipitation on the 100 m scale cannot be completely ruled out as a source of the irregularities, in one case the blob gradient can be shown to be stable to the E λ B mechanism. The most likely cause of the irregularities appears to be shearing of the high velocity plasma flow in a region adjacent to the density enhancement. This region is characterised by a high ion temperature while the resulting scintillation has a shallow spectral slope.  相似文献   

10.
In the aggregate, acoustic gravity waves in the F-region constitute a spectrum of geophysical noise extending from the frequencies involved in diurnal variations up to the Brunt-Väisälä buoyancy frequency. They drive a roughly uniform power spectrum of travelling ionospheric disturbances (TIDs) with vertical scales of the order of the atmospheric scale height H and with horizontal scales extending from the radius of the Earth down to H. It has been known since the 1950s that this permits multiple normals onto the F-region from an ionosonde, thereby creating the multiple-trace type of spread F on ionograms. At shorter scales the spectrum of TIDs decreases in strength and, below the mean free path of the neutral atmosphere, creates a spectrum of plasma turbulence aligned along the Earth's magnetic field. Progressively shorter scales are responsible for phase scintillation, for amplitude scintillation and for blur-type spread F on ionograms. A weak extension of the spectrum to scales less than the ion gyroradius is responsible for spread F and transequatorial propagation in the VHF band. Under evening conditions in equatorial regions a band of TIDs with wavelengths of the order of 600 km can, at times, have a phase velocity that matches the drift velocity of the plasma (Röttger 1978). This band of TIDs is then amplified until it breaks (Klostermeyer 1978). The associated explosive increase in plasma turbulence creates the plume phenomenon discovered by Woodmn and La Hoz (1976).  相似文献   

11.
Recent rocket and satellite measurements of equatorial F-region irregularities have been able to resolve wavelengths comparable to the meter-size sensitivities of the Jicamarca and Altair radar backscatter techniques. In a July 1979 rocket campaign at the Kwajalein Atoll, vertical profile measurements by ‘in situ’ plasma probes showed the F-region marked by a number of large scale plasma depletions, each having its own distribution of smaller scale irregularities and a trend toward a co-location of the more intense irregularities with positive gradients of larger scale features. Similar measurements on the S3-4 Ionospheric Irregularities Satellite have shown large scale depletions (1–3 orders of magnitude) with east-west asymmetries that point toward the western wall as the sight for the more intense plasma density fluctuations. The combined rocket and satellite measurements provide a two-dimensional model of macroscopic F-region depletions with small structures tending to develop more readily on the top and western boundaries. The model and associated power spectral analyses is in concert with a developing catalog of radar observations and the predictions of numerical simulations which employ the Rayleigh-Taylor instability as the primary mechanism for the generation of intermediate wavelength irregularities.  相似文献   

12.
This paper examines the global distribution of electron density irregularities with scales of the order of several tens to hundreds of meters in the ionosphere by using topside sounder data from the COSMOS-1809 satellite obtained in May–June and December 1987. The diffuse traces of Z-waves on topside ionograms in a frequency band just below the upper hybrid resonance are used for diagnostics. These traces are attributed to the scattering of sounder-generated ordinary and slow extraordinary mode waves.  相似文献   

13.
The distribution of nighttime irregularities which produce satellite scintillation has been examined for a midlatitude location using a large array of receivers. The irregularities are aligned along the earth's magnetic field and appear to extend from top to bottom of the F-region, being preferentially observed near the F-region ionization peak where they produce the strongest scintillations. A new method of mapping the horizontal distribution shows patches of various shapes and sizes but with no systematic structure.  相似文献   

14.
Whistler mode signals from VLF transmitters received at Faraday, Antarctica (65° S, 64° W) during 1986–1991 show an annual variation in the number of hours over which signals are observed, with a maximum in June and a minimum in December. The variation was larger at solar minimum than at maximum and can be understood in terms of changes in absorption of VLF signals in the D-region, where the high geographic latitude of Faraday plays an important role in producing low attenuation levels during the austral winter. In contrast, very little such variation was observed at Dunedin, New Zealand (46° S, 171° E) in 1991. Nighttime whistler mode signals have start and end time trends that are consistent with the influence of F-region absorption. Increases in whistler mode occurrence appear to be associated with periods of high geomagnetic activity at solar maximum but not during solar minimum. A possible mechanism involving decreased F-region absorption is discussed.  相似文献   

15.
The pulse-to-pulse beam steerability of the M U radar of Kyoto University enables us to observe multiple beam positions simultaneously. Based on 560 h of this type of data, we present two typical patterns of mid-latitude ionospheric disturbances and their horizontal traveling characteristics. Wavy structures have not been found in large-scale disturbances. Isolated disturbances travel primarily southward (equatorward) in disturbed conditions, while no preferred direction is observed in quiet conditions.  相似文献   

16.
Whistler-mode signals observed at Faraday, Antarctica (65° S, 64° W, Λ=50.8°) show anomalous changes in group delay and Doppler shift with time during the main phase of intense geomagnetic activity. These changes are interpreted as the effect of refracting signals into and out of ducts near L=2.5 by electron concentration gradients associated with edges of the mid-latitude ionospheric trough. The refraction region is observed to propagate equatorwards at velocities in the range 20–85 ms−1 during periods of high geomagnetic activity (Kp ≥ 5), which is in good agreement with typical trough velocities. Model estimates of the time that the trough edges come into view from Faraday show a good correlation with the observed start times of the anomalous features. Whistler-mode signals observed at Dunedin, New Zealand (46° S, 171° E, Λ=52.5°) that have propagated at an average L-shell of 2.2 (Λ=47.6°) do not show such trough-related changes in group delay. These observations are consistent with a lower occurrence of the trough at lower invariant latitudes.  相似文献   

17.
18.
This paper presents simulated ionograms calculated for a parabolic ionospheric layer containing irregularities in the form of small amplitude waves. With small amplitudes, perturbation techniques can be used enabling results for the irregular ionospheres to be calculated from the results for smooth ionospheres. This approach is relatively straightforward and avoids having to ray trace new paths each time the irregularity parameters are changed. It is, however, restricted to irregularities which do not cause multiple echoes. Irregularities with vertical wavelengths of up to a few kilometres can produce significant changes in the ionosphere over height intervals smaller than those involved in reflecting a single pulse. Consequently, in the simulation procedure, it is essential to consider not just the carrier frequency but the complete frequency spectrum of the pulse. Irregularities with vertical wavelengths of the order of 10 km or more can produce ripples in an ionogram trace. These will, of course, be more evident on ionograms with high frequency resolution. Irregularities with vertical wavelengths of up to several kilometres and amplitudes up to a few per cent can produce significant pulse spreading and splitting. The actual effects depend not just on the irregularity properties but also on the ionosonde pulse width, gain and frequency and height resolutions. Some simulations show trace splitting and quasi-horizontal traces similar in many respects to effects observed by Bowman (1987, J. atmos. terr. Phys. 49, 1007) and Bowmanet al. (1988, J. atmos. terr. Phys. 50, 797). Consequently it is suggested that, at least in some cases, small amplitude (≤3%) and small scale (≤4 km) irregularities produce the spread-ifF reported by these authors.  相似文献   

19.
Periodic amplitude fluctuations of VHF signals from a geostationary satellite monitored from near the magnetic equator have been observed in the evening hours as precursors of strong Rayleigh fading associated with plumes of irregularities. These periodic fluctuations called “amplitude waves” exhibit amplitude changes of only 1 to 2 dB and have been observed for up to 30 minutes before the onset of strong scintillations. Individual fades are correlated over distances of at least 120 km in the magnetic eastwest direction. The velocity of these wavelike disturbances has been found to be approximately 140 ms−1 eastward with a corresponding wavelength of 25 km. No wavelike behavior of Faraday rotation, a measure of the background changes in TEC, was observed during these times. Several mechanisms are examined as the cause of these amplitude waves; however, none was found to be completely satisfactory in explaining the observations.  相似文献   

20.
Experimental observations and theoretical modelling of the terrestrial mid-latitude trough are reviewed. The mid-latitude trough is considered as an F-layer phenomenon, and its relationships to the lightion trough in the topside ionosphere and to the plasmapause are discussed. The observed morphology of the mid-latitude trough is summarised. Recent evidence on plasma temperatures in the trough is examined. The physical processes that may be important in the trough region are listed. Large-scale computational models that include some of those processes are described and the results compared with observations. Deficiencies in the models and possible future developments are mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号