首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The University College London Thermospheric Model and the Sheffield University Ionospheric Convection Model have been integrated and improved to produce a self-consistent coupled global thermospheric/high latitude ionospheric model. The neutral thermospheric equations for wind velocity, composition, density and energy are solved, including their full interactions with the evolution of high latitude ion drift and plasma density, as these respond to convection, precipitation, solar photoionisation and changes of the thermosphere, particularly composition and wind velocity. Four 24 h Universal Time (UT) simulations have been performed. These correspond to positive and negative values of the IMF BY component at high solar activity, for a level of moderate geomagnetic activity, for each of the June and December solstices. In this paper we will describe the seasonal and IMF reponses of the coupled ionosphere/thermosphere system, as depicted by these simulations. In the winter polar region the diurnal migration of the polar convection pattern into and out of sunlight, together with ion transport, plays a major role in the plasma density structure at F-region altitudes. In the summer polar region an increase in the proportion of molecular to atomic species, created by the global seasonal thermospheric circulation and augmented by the geomagnetic forcing, controls the plasma densities at all Universal Times. The increased destruction of F-region ions in the summer polar region reduces the mean level of ionization to similar mean levels seen in winter, despite the increased level of solar insolation. In the upper thermosphere in winter for BY negative, a tongue of plasma is transported anti-sunward over the dusk side of the polar cap. To effect this transport, co-rotation and plasma convection work in the same sense. For IMF BY positive, plasma convection and co-rotation tend to oppose so that, despite similar cross-polar cap electric fields, a smaller polar cap plasma tongue is produced, distributed more centrally across the polar cap. In the summer polar cap, the enhanced plasma destruction due to enhancement of neutral molecular species and thus a changed ionospheric composition, causes F-region plasma minima at the same locations where the polar cap plasma maxima are produced in winter.  相似文献   

2.
When simulating the global structure of stationary planetary waves (SPW) the problem of obtaining the numerical solution in the equatorial region appears. It results from the presence of apparent singularities in the operator of the SPW latitudinal structure when the Coriolis parameter is small. The new method based on SPW latitudinal operator inversion is proposed. This method permits the difficulties arising from the simulation of stationary large scale disturbances at low latitudes to be avoided. The global structure of SPW with zonal wave number m = 1 at the mesosphere and lower thermosphere heights has been calculated for the background zonal wind distribution representing a climatic picture of the solstice conditions. In the region of the mean zonal westerlies the SPW penetration across the equator is obtained. The SPW at low latitudes are shown to appear most significantly in the zonal component of the wind velocity. The influence of planetary wave motions on the distribution of longlived species in the ionospheric D-region and at the heights of lower thermosphere are discussed.  相似文献   

3.
A spaced antenna partial reflection radar located at Mawson, Antarctica (67°S, 63°E, invariant latitude 70°S), has been used to measure the horizontal wind field in the height range 70–110 km. Three years of data (1985–1987) from the radar have been analysed in order to investigate correlations between geomagnetic activity (determined from the local K-index) and the horizontal wind. Results are analysed using a randomization technique and show that larger winds are measured during geomagnetically active periods in both the raw (or unfiltered) wind values and in the medium-frequency (2–6 h period) and high-frequency (1–3 h period) components. The raw winds tend to be shifted towards the geographic NW to NE quadrant in the early morning hours during high K-times. The observed correlation is seen down to 86 km and shows a seasonal dependence. The mean r.m.s. velocity of the radar scatterers and the angular spread of the return echoes are also found to be correlated with geomagnetic activity. The medium- and high-frequency components of the wind are polarized in the magnetic zonal direction during all seasons of the year.  相似文献   

4.
On 8 May 1986, between 1113 and 1600 UT, an isolated magnetospheric substorm was observed, during which the AE-index exceeded 700 nT (CDAW 9E event). Three available sets of measurements (a) of the solar-wind parameters (IMP-8 satellite), (b) of the magnetotail energy flux (ISEE-1 spacecraft), and (c) of ground magnetic observatories, allowed us to make a detailed study of the overall magnetospheric response to changes of the interplanetary magnetic field (IMF) direction, during this event of weak solar-wind coupling.In order to study the mechanisms and time-delays of the magnetospheric response to the abrupt increase of the solar-wind energy input, we have evaluated the total magnetospheric energy output UT following two different methods: (a) Akasofu's method, taking the ring current decay time τR constant, and (b) Vasyliunas' method where the values of ut are independent of the solar-wind energy input as determined from the epsilon parameter. Both methods suggest that the driven system has been considerably developed during this substorm, while an unloading event has been superposed at the expansion onset.  相似文献   

5.
W. E. SANFORD 《Geofluids》2005,5(3):185-201
Groundwater more saline than seawater has been discovered in the tsunami breccia of the Chesapeake Bay Impact Crater. One hypothesis for the origin of this brine is that it may be a liquid residual following steam separation in a hydrothermal system that evolved following the impact. Initial scoping calculations have demonstrated that it is feasible such a residual brine could have remained in the crater for the 35 million years since impact. Numerical simulations have been conducted using the code HYDROTHERM to test whether or not conditions were suitable in the millennia following the impact for the development of a steam phase in the hydrothermal system. Hydraulic and thermal parameters were estimated for the bedrock underlying the crater and the tsunami breccia that fills the crater. Simulations at three different breccia permeabilities suggest that the type of hydrothermal system that might have developed would have been very sensitive to the permeability. A relatively low breccia permeability (1 × 10?16 m2) results in a system partitioned into a shallow water phase and a deeper superheated steam phase. A moderate breccia permeability (1 × 10?15 m2) results in a system with regionally extensive multiphase conditions. A relatively high breccia permeability (1 × 10?14 m2) results in a system dominated by warm‐water convection cells. The permeability of the crater breccia could have had any of these values at given depths and times during the hydrothermal system evolution as the sediments compacted. The simulations were not able to take into account transient permeability conditions, or equations of state that account for the salt content of seawater. Results suggest, however, that it is likely that steam conditions existed at some time in the system following impact, providing additional evidence that is consistent with a hydrothermal origin for the crater brine.  相似文献   

6.
A scanning Fabry-Perot spectrometer (FPS), located at Mawson station, Antarctica (672S, 63°E, invariant latitude 70°S) was used to obtain vertical wind, temperature, and emission intensity measurements from the λ558 nm emission of atomic oxygen. The measured temperature is used to assign an approximate emission height to the observations. A spaced-antenna partial-reflection radar was run concurrently with the FPS from which the presence of enhanced ionization in the D-region could be inferred from the return heights and strengths of the echoes. Large upwards winds of approximately 30 m s−1, at altitudes less than 110 km, appear to be a direct response of the neutral atmosphere to intense auroral events. It is suggested that the observed upwelling is a result of particle heating at heights below the principal emission height. At higher altitudes, vertical winds of a similar magnitude are also measured during geomagnetically disturbed conditions, although here they do not appear to be associated with particular auroral events. In this case it is suggested that upwelling is produced by a combination of Joule and particle heating.  相似文献   

7.
In this paper 16 geomagnetic storms in 1968–1978 recorded at 8 magnetic observatories located from polar to equatorial regions in the λ= 120°E longitudinal zone and its vicinity have been analysed. The horizontal component H traces of 27 h intervals have been sampled once every 1.5 min. The time sequences of the data thus obtained have been processed by the method of digital filtering and maximum entropy spectral analysis (MESA).The results of the analysis are compared with the associated solar wind parameters. It confirms that the geomagnetic disturbances are controlled by the solar wind in several ways, i.e. geomagnetic disturbances respond differently to various solar wind parameters or to the different ranges of them. The north-south component of the interplanetary magnetic field (IMF) Bz., the IMF latitude θ and the solar wind velocity V play the most important part in inducing geomagnetic storms.  相似文献   

8.
9.
Japan and China's ability to manage their bilateral relationship is crucial for the stability of the East Asian region. It also has a global impact on the security and economic development of other regions. For just as China's rise has inevitably involved an expansion of its global reach, so Japan's responses to the challenges posed by China have increasingly taken a global form, seeking to incorporate new partners and frameworks outside East Asia. Japan's preferred response to China's regional and global rise in the post‐Cold War period has remained one of default engagement. Japan is intent on promoting China's external engagement with the East Asia region and its internal domestic reform, through upgrading extant bilateral and Japan–China–US trilateral frameworks for dialogue and cooperation, and by emphasizing the importance of economic power to influence China. Japan is deliberately seeking to proliferate regional frameworks for cooperation in East Asia in order to dilute, constrain and ultimately engage China's rising power. However, Japan's engagement strategy also contains the potential to tilt towards default containment. Japan's domestic political basis for engagement is becoming increasingly precarious as China's rise stimulates Japanese revisionism and nationalism. Japan also appears increasingly to be looking to contain China on a global scale by forging new strategic links in Russia and Central Asia, with a ‘concert of democracies’ involving India, Australia and the US, by competing for resources with China in Africa and the Middle East, and by attempting to articulate a values‐based diplomacy to check the so‐called ‘Beijing consensus’. Nevertheless, Japan's perceived inability to channel China's rise either through regional engagement or through global containment carries a further risk of pushing Japan to resort to the strengthening of its military power in an attempt to guarantee its essential national interests. It is in this instance that Japan and China run the danger of a military collision.  相似文献   

10.
Measurements of precipitating particles on board DMSP F7 spacecraft are used to analyze the distribution of ionospheric conductance in the midnight auroral zone during substorms. The distribution is compared with the meridional profile of ionospheric currents calculated from magnetic data from the Kara meridional chain. Two regions of high Hall conductance are found; one of them is the traditional auroral zone, at latitudes 64–68°, and the other is a narrow band at latitudes 70–73°. The position of high conductance zones is in agreement with the location of the intense westward currents. The accelerated particle population is typical of electrons Ee > 5 keV in the high conductance region.  相似文献   

11.
12.
The role of gravity waves for the momentum and heat budget of the atmosphere between approximately 70 and 110 km height is considered. Parameterization schemes for vertical gravity wave diffusivity, generalized Rayleigh friction, viscous force, heat conduction and kinetic energy dissipation are reviewed. Eddy diffusion parameterization and its relation to the gravity wave approach is also discussed and it is shown that principal similarities exist in both concepts, especially when irregular (stochastic) contributions to the perturbations are modeled. Special attention is paid to the dissipation of perturbation kinetic energy and its contribution to the heat budget of the mesopause region. It is concluded that the amount of energy which can be attributed to the part of the gravity wave spectrum contributing to generalized Rayleigh friction above the mesopause is of the order of 10% of the total perturbation energy.  相似文献   

13.
A study has been designed specifically to investigate the dependence of the ionospheric response on the time of occurrence of sudden commencement (SC) and the intensity of the magnetic storms for a low- and a mid-latitude station by considering total electron content and peak electron density data for more than 60 SC-type geomagnetic storms. The nature of the response, whether positive or negative, is found to be determined largely by the local time of SC, although there is a local time shift of about six hours between low- and mid-latitudes. The time delays associated with the positive responses are low for daytime SCs and high for night-time SCs, whereas the opposite applies for negative responses. The time delays are significantly shorter for mid-latitudes than for low-latitudes and, at both latitudes, are inversely related to the intensity of the storm. There is a positive correlation between the intensity of the ionospheric response and that of the magnetic storm, the correlation being greater at mid-latitudes. The results are discussed in the light of the possible processes which might contribute to the storm-associated ionospheric variations.  相似文献   

14.
The harmonic analysis of the plasma frequency fluctuations obtained with the plasma line experiment at St. Santin shows the existence of a noise of fluctuations for periods below 20 min. The main feature of this noise is to present a cut off low period which is essentially variable. A theoretical study of the propagation of short periodic gravity waves within a realistic thermosphere shows that the main parameter governing the position of the cut off frequency is the wind profile. The same theoretical study shows that the gravity waves of period between ¦16, 20¦min can propagate essentially during the day and the waves of period between ¦10, 13¦min propagate during the night. This conclusion is in agreement with the results of a Faraday rotation experiment.  相似文献   

15.
The EISCAT Common Programme can be used in three ways to monitor tidal oscillations in the lower thermosphere. In Common Programme One (CPI) tristatic observations provide measurements of the ion-velocity vector at several heights in the E-region and one height in the F-region. In Common Programme Two (CP2) monostatic measurements give profiles of ion velocity in the E-region while tristatic measurements give continuous measurements of ion velocity in the F-region. From the ion velocities and the ion-neutral collision frequency, the vector of the E-region neutral wind can be determined and both east-west and north-south components of the diurnal, semi-diurnal and ter-diurnal oscillations can be identified. CP1 and CP2 also provide profiles of the field-aligned ion velocity, and these can be used to calculate the north-south component of the neutral wind without knowing the ion-neutral collision frequency, but the result is affected by any vertical component of neutral velocity. The three methods are compared and the advantages of CP2 demonstrated.  相似文献   

16.
17.
Data from the Fabry-Perot Interferometer and Dynasonde at Halley (75.5°S, 26.6°W, L ∼ 4.2), Antarctica, have been used to calculate the forces acting on the high latitude thermosphere. Two case studies of the forces have been undertaken to study why the thermospheric zonal wind speeds are typically so different on nights with different geomagnetic activity. One case study analyses the forces on a geomagnetically active night and the other analyses them on a geomagnetically quiet night. Even on the geomagnetically active night, it is found that the ion drag force is not necessarily the largest force at any one time. Simple comparison of the magnitudes of the forces does not make it very clear which ones dominate in controlling the motion of the thermosphere. This can be seen more clearly by rewriting the momentum equation so that the neutral velocity is expressed in terms of the ion velocity, and the other forces normalized by the ion density. It then becomes clear that, in the evening, the differences in the neutral velocity are due to increases in both ion density and ion velocity, while in the morning, only changes in ion density are important. Thus, although the ion drag force is often not the largest force, it appears that changes in it can account for the variations in neutral velocity between the two nights that were studied.It has also been shown as part of the analysis that whether or not the viscosity needs to be considered when calculating the ion drag force at an altitude of 240 km depends on the ion density profile. If the profile has a single peak then it is only necessary to consider the ion density at 240 km. It is, however, possible that just considering the ion density at this altitude may lead to an underestimate of the effective ion drag force if more than one peak is present.  相似文献   

18.
A great deal of accurate total density data from the CACTUS accelerometer experiment has been collected in equatorial regions during the last minimum of the solar cycle. Using these data, an analysis of the magnetically disturbed thermosphere has been performed with an improved resolution. Time delay of the response, latitudinal and longitudinal variations for solstice, day-time and night-time conditions have been studied. An attempt is made to interpret the behaviour of the thermosphere in the light of existing theories. An asymmetrical heating in latitude and a heating depending on longitude are needed in order to interpret the results.  相似文献   

19.
Data from the unique network of low latitude geomagnetic observatories in India extending from the dip equator to the northern focus of the Sq current system have shown a new type of Sq current distribution different from those associated with the normal or the counter electrojet currents. On 3 December 1985 both the horizontal as well as the vertical components of the geomagnetic field at Annamalainagar showed maximum values around the midday hours. The abnormal feature described seems to be rather a rare phenomenon. The solar daily range of H field is found to be fairly constant from the dip equator up to about 12° dip latitude, suggesting the complete absence of the equatorial enhancement of ΔH, typical of the equatorial electrojet. The cancellation of the equatorial electrojet is suggested to be caused by a westward flowing current system much wider than the conventional equatorial electrojet. This additional current system could be due to the excitation of certain tidal modes at low latitudes on such abnormal days.  相似文献   

20.
This article seeks to dispel the popular myth surrounding the food crises which precipitated food riots in the global South in 2008. Arguing from a structural and historical perspective, the article suggests that global hunger is a deep-rooted crisis that is embedded in the social and structural variables associated within the nation-state that places a restraint on the self-regulating capacity of nation-states in the South. Internationalizing the food crisis, however, will do more harm to the south’s agricultural transformation and rural development. The article argues for integrated rural development that will increase output growth through an institutional, technological, and marketing strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号