首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The simultaneous recordings of the amplitude scintillations of VHF radio signals from nearby geostationary satellites FLEETSAT (at 73°E long.) and SIRIO (at 65°E) received at Bombay (geog. lat. 19°N, geog. long. 73°E, mag. lat. 15°N) have revealed systematic time shifts in the starting and the ending of the individual scintillation events. The ionosphere crossover points of the two transmission paths were separated by only 80 km in the east-west direction, which was smaller than the average size of the irregularity patches. Scintillations normally started after 1930 h, reached a maximum at 2200 h and slowly decreased till 1000 h, after which no scintillations were observed. The speed of the irregularity patches computed from the time shifts of these events was about 150 m s−1 in the early hours of the night, decreasing to about 100 m s−1 by midnight and showing much lower velocities in the post-midnight hours.  相似文献   

2.
An extended period (1973–1985) of recording of random and Fresnel type quasi-periodic (QP) scintillations in southern mid-latitudes, using satellite beacon transmissions at a frequency of 150 MHz, has provided some new information on the morphology of scintillation-producing irregularities.It has become evident that a pronounced daytime increase of the random type of scintillations in the southern winter (at 1200–1600 LT) occurs throughout the solar cycle and becomes a distinct daytime maximum during the years of sunspot minimum. Scintillations are most intense in the pre-midnight period in the southern summer (2000–2400 LT). There is a gradual decline in scintillation activity by about 40% from the period of sunspot maximum to the period of sunspot minimum. It appears that a specific type of sporadic-E, so-called constant height Es (Esc), is responsible for daytime scintillation activity in winter. Night-time scintillations are strongly correlated with the presence of the range-spread type of spread-F, but not so with the frequency-spread type.There are two peaks in the occurrence of QP scintillations, predominantly in the southern summer: in the late morning (0800–1000 LT) and in the pre-midnight period (2000–2200 LT). The daytime QP scintillations occur mainly polewards of the station, whereas the night-time scintillations are recorded predominantly equatorwards. There is a distinct increase in the occurrence number of QP scintillations with a decrease in the sunspot number.  相似文献   

3.
An experiment is described for the routine study of scintillations and ionospheric irregularities at high-latitudes using NNSS satellites with additional coordinated observations by means of the EISCAT ionospheric radar facility. Early results, obtained during the development phase of the experiment, are presented of the power spectra of intensity fluctuations at 150 MHz observed at the equatorwards edge of the high-latitude irregularity zone. The spectra of 165 samples of night-time scintillation recorded during October 1982 to May 1983 show a spectral index with a mean value of −3.58 and a steepening of the spectral slope with increasing S4. Some examples of scintillation arising from irregularities at E-layer height show spectral indices of magnitude generally smaller than for F-region cases. A few spectra have been found with a clear break in spectral slope at around 10 Hz, suggesting two regimes for irregularities of different scale sizes.  相似文献   

4.
5.
First results on the behaviour of thermospheric temperature over Kavalur (12.5°N, 78.5°E geographic; 2.8°N geomagnetic latitude) located close to the geomagnetic equator in the Indian zone are presented. The results are based on measurements of the Doppler width of O(1D) night airglow emission at 630 nm made with a pressure-scanned Fabry-Perot interferometer (FPI) on 16 nights during March April 1992. The average nighttime (2130-0430 IST) thermospheric temperature is found to be consistently higher than the MSIS-86 predictions on all but one of the nights. The mean difference between the observed nightly temperatures and model values is 269 K with a standard error of 91 K. On one of the nights (9/10 April 1992, Ap = 6) the temperature is found to increase by ~250 K around 2330 IST and is accompanied by a ‘midnight collapse’ of the F-region over Ahmedabad (23°N, 72°E, dip 26.3°N). This relationship between the temperature increase at Kavalur and F-region height decrease at Ahmedabad is also seen in the average behaviour of the two parameters. The temperature enhancement at Kavalur is interpreted as the signature of the equatorial midnight temperature maximum (MTM) and the descent of the F-region over Ahmedabad as the effect of the poleward neutral winds associated with the MTM.  相似文献   

6.
It is known that on a counter electrojet day the noontime electron density at the equator shows enhanced values with no bite-out. The consequences of the absence of the normal equatorial electrojet on the electron density distribution at the equatorial station Kodaikanal (dip latitude 1.4°N, long. 77.5°E) and at an anomaly crest location Ahmedabad (dip latitude 18°N, long. 73°E) are discussed for a strong electrojet (SEJ) day and a counter electrojet (CEJ) day. The electron density distribution with height for a pair of SEJ and CEJ days at the two equatorial stations Kodaikanal and Huancayo (dip latitude 1°N, long. 75°W) are studied. The F-region peak height, hm and the semi-thickness parameter ym on the SEJ day followed a similar variation pattern. On the CEJ days ym exhibited a substantially low and mostly flattened daytime variation compared to the peaked values on the SEJ day. An attempt is made to interpret these differences in terms of the changes in the vertical drift pattern resulting from the E × B drift of plasma at the equator and the varying recombination rate β, which is also a height dependent and a local time dependent parameter.  相似文献   

7.
Since the last equatorial aeronomy meeting in 1980, our understanding of the morphology of equatorial scintillations has advanced greatly due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the GHz range has been demonstrated. The fact that night-time F-region dynamics is an important factor in controlling the magnitude of scintillations has been recognized by interpreting scintillation observations in the light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation.A distinct class of equatorial irregularities known as the bottomside sinusoidal (BSS) type has been identified. Unlike equatorial bubbles, these irregularities occur in very large patches, sometimes in excess of several thousand kilometers in the E-W direction and are associated with frequency spread on ionograms. Scintillations caused by such irregularities exist only in the VHF band, exhibit Fresnel oscillations in intensity spectra and are found to give rise to extremely long durations (~ several hours) of uninterrupted scintillations. These irregularities maximize during solstices, so that in the VHF range, scintillation morphology at an equatorial station is determined by considering occurrence characteristics of both bubble type and BSS type irregularities.The temporal structure of scintillations in relation to the in situ measurements of irregularity spatial structure within equatorial bubbles has been critically examined. A two-component irregularity spectrum with a shallow slope (p1 ~ 1.5) at long scalelengths (> 1km) and steep slope (p2 ~−3) at shorter scalelengths has been found in both vertical and horizontal spectra. Phase and intensity scintillation modelling was found to be consistent with this two-component irregularity spectrum.Finally, the information provided by the major experimental undertaking represented by Project Condor in the fields of night-time scintillations and zonal irregularity drifts with be briefly outlined.  相似文献   

8.
The second moment of the complex amplitude or the mutual coherence function (MCF) for transionospheric VHF radio waves transmitted from the geostationary satellite ATS-6 is computed from daytime amplitude and phase scintillations recorded at an equatorial station, in order to study the structure of electrojet irregularities. The shape of the correlation function for fluctuations in the integrated electron content along the signal path is deduced by using a theoretical relationship between this correlation function and the MCF which is based on the assumption that the irregularities are “frozen”. Further, using a power-law spectrum to describe the electrojet irregularities, the outerscale lo associated with the spectrum as well as the r.m.s. density fluctuation are estimated from theoretical fits to the computed values. The irregularity drift speeds Vo transverse to the signal path, for the scintillation events studied here, are derived from power spectra of weak scintillations. On the basis of a relationship between lo and Vo suggested by a linear theory of the gradient-drift instability, the effective Hall conductivity is estimated to be about five times the effective Pedersen conductivity in the electrojet region.  相似文献   

9.
Radio astronomical interferometric observations are affected by atmospheric refraction, being particularly sensitive to inhomogeneities in the atmosphere. At frequencies below 2 GHz the influences of the ionosphere are significant in radio astronomy, especially for single dish observations and for connected element interferometry.Analytical expressions for the manifestations of weak ionospheric scintillation in radio interferometric observations, are derived. We indicate which ionospheric scintillation parameters can be derived from radio interferometric measurements. It is shown that the baseline dependence of the observed amplitude scintillation index implies a direct determination of the height of the region of random irregular electron distribution. Furthermore, the linear scale of the irregularities causing scintillation can be determined directly from the baseline dependence of the scintillation index S4. From the mean square phase fluctuations as a function of interferometer baseline, the spatial scale of the irregularities responsible for this effect can also be determined. From a comparison with observational mid-latitude data we find indications that scintillation irregularities occur in the lower parts of the F2-layer. The spatial scale of irregularities causing amplitude scintillation is of the order of about 25 to about 500 metres. Phase scintillations are caused by irregularities with dimensions which are an order of magnitude larger.  相似文献   

10.
Recent studies of the physics of F-layer irregularities in the equatorial ionosphere have been concerned with the development of plumes or patches. A series of observations in the equatorial anomaly region in a year of high solar flux has been analyzed for the radio propagation effect of scintillations. The observations were made on patches in the developing, mature and decay phases. Although irregularities develop on the west wall of the patches, the intensity of scintillation does not appear to diminish within the patch; the patches contain bursts of high level activity.Patch characteristics at microwave wavelengths match airglow depletion images when two considerations are introduced, i.e. the westward tilt of the patch as shown by optical and radar observations and the effective path length of the irregularities affecting the radio propagation path. Using optical images of depletions the effective thickness of the layer of irregularities above the peak of the F2-layer can be estimated; it is relatively short, i.e. of the order of 70 km for the gigaHertz frequencies and 150 km for the 257 MHz transmissions. The total path length is 110 km for the microwave frequencies and 220 km for the lower levels of scintillation at 257 MHz. The decrease in microwave scintillations compared to meter wavelength observations in the midnight and post-midnight time period in these anomaly observations is due to the combination of decay of electron density as well as the relatively rapid decay of smaller scale irregularities, as has previously been noted in observations at the magnetic equator.  相似文献   

11.
VHF amplitude scintillation measurements made during the period April 1978 through December 1982 at Calcutta (23°N, 88.5°E; 32°N dip), situated near the northern crest of the Appleton Anomaly in the Indian sector, have been used to study the association of post-midnight (as well as post-sunrise) scintillations with the occurrences of the maximum negative excursion in the variation of the Earth's horizontal magnetic intensity. The post-midnight scintillation has been found to be related to the maximum negative excursion occurring in the 0000–0600 LT interval. No such relation is observed with the pre-midnight excursions. Scintillation with onset between 0000 and 0300 LT shows remarkable correspondence with the occurrence of negative excursion (18 out of 20 available cases). Magnetic conditions with Dst < −150 nT have been found to be most effective in producing the above scintillation activity. From the present observations, a threshold value of the maximum negative excursion of Dst for producing scintillation may be obtained, Dst < −75 nT being significantly associated with the post-midnight scintillation occurrences. The results are interpreted in terms of the reversal of the equatorial horizontal electric field, under magnetically disturbed conditions, due to a coupling of the high latitude and magnetospheric current systems with the equatorial electric field.  相似文献   

12.
13.
Spatial and temporal distributions of ionospheric scintillations have been observed at Kashima (36.0°N, 140.7°E) using VHF and UHF signals from low-altitude satellites. From these observations, three different types of prevailing ionospheric scintillations seen from Japan are identified. Scintillations of type I are rather weak scintillations, occur most frequently during the daytime in summer and are primarily associated with the sporadic E-layer. However, considerable occurrences of type I scintillations are also observed during the night in summer and autumn, not necessarily due to the sporadic E-layer but occasionally due to F-layer irregularities which originate from localized midlatitude processes. Type II scintillations are much stronger than type I and occur near the equatorward horizon during spring, summer and autumn. Their occurrences start after sunset, reach a maximum before midnight and decrease subsequently, with a tendency for negative and positive correlations with the magnetic and solar activities, respectively. It is concluded that type II scintillations are the midlatitude aftermath of equatorial plume-associated irregularities and cause trans-equatorial propagation of VHF waves. From observations of type I and II scintillations, the boundary between midlatitude and equatorial scintillations is clearly identified. Type III scintillations are as strong as type II and appear only during magnetically active periods. They can be regarded as another aspect of the severe scintillation events observed on gigahertz waves from geostationary satellites as reported by Tanaka (1981).  相似文献   

14.
A 5-yr study (1987–1992) has been undertaken at a southern mid-latitude station, Brisbane (35.6°S invariant latitude) on scintillation occurrences in radio-satellite transmission (at a frequency of 150 MHz) from polar orbit Transit satellites, within a sub-ionospheric invariant latitude range 20–55°S. Over 7000 recorded passes were used to define the spatial and temporal occurrence pattern of different types of scintillation events. Two predominant scintillation types were found: so-called type P (associated with a scintillation patch close to the magnetic zenith) and type S (characteristic of the equatorward edge of auroral scintillation oval). Type S was by far the most frequent during sunspot maximum (1988–1992), with sharp occurrence peaks in the summer-autumn period. Its seasonal occurrence showed a high degree of correlation (correlation coefficient r = 0.8) with the seasonally averaged 10.7 cm solar radio flux. This type occurred mainly at night-time except in austral summer where 40% of scintillations were detected in daytime, coinciding with the well-known summer peak of sporadic-E occurrence. Type P was more predominant during a year (1987) of ascending sunspot activity but decreased to a much lower level during the sunspot maximum.  相似文献   

15.
A coordinated experiment involving scintillation observations using orbital satellite beacons and CP-3-F program measurements by means of the EISCAT ionospheric radar facility is described. The results reveal the location of patches, containing kilometre-scale irregularities, in the vicinity of a region of an electron density minimum and an electron temperature increase. In the daytime under quiet geomagnetic conditions, the region of scintillations coincided closely with the southwards gradient in electron density, while a plasma drift velocity was mainly westwards VE-W ≲ 0.3 km/s. In the evening, the region of the most intense irregularities was transformed to the northwards sense of the electron density gradient simultaneously with the plasma drift velocity reverse and the arrival of a significant southwards component VN-S ≲ (1.5−1.0) km/s. EISCAT data demonstrated the patches' location in regions of an electron temperature increase. Processes operating to create kilometer-scale irregularities were analysed and estimated according to the data obtained. The assessments suggest that irregularities with a cross-field scale, equal to or greater than 1 km, and a field-aligned scale, equal to or greater than 30 km, were the result of growth of the thermomagnetic instability.  相似文献   

16.
Slant-F traces on ionograms recorded by a modern ionosonde in a sunspot-minimum period have revealed the existence of field-aligned irregularities at times of spread-F occurrence. This appears to be the first investigation in a mid-latitude region around 36° (geomagnetic) to detect these irregularities at F2-region heights using an ionosonde. Although such traces were observed frequently near sunspot minimum they were seldom recorded for periods close to sunspot maximum. Also, for a specific spread-F event in August 1989, both the ionograms from the modern ionosonde and scintillations of 150 MHz transmissions from a Transit satellite indicate the existence in the ionosphere of periodic structures (period around 11 min). The scintillation recording also included rapidly fading signals indicative of small-scale structures. The satellite had a path close to the magnetic meridian which passed through the recording station (Brisbane, Australia). Because of the enhanced signal fluctuations in the scintillation recording on this occasion it seems likely (with the support of other evidence on the ionograms) that the small-scale structures present were field-aligned.  相似文献   

17.
A quasi 2-day oscillation has been observed in the meteor winds at Durham since 1970. On a four-day basis the oscillation occurs throughout the year with amplitudes of 10 m s−1 and standing wave or evanescent (λz > 150 km) behavior with height. During late summer the oscillation increases in amplitude to ~30 m s−1 with increased phase coherence. When analyzed as a 48 h component the time of maximum of the North-South oscillation prefers the value 15 h LST implying some interaction with the solar tides. The amplitude of the 2-day component is correlated with the daily magnetic index Ap indicating magnetic activity as a possible forcing for this oscillation.  相似文献   

18.
An analysis of the POGO satellites observations of the magnetic field of the equatorial electroject for the September equinoctial months of the years 1967, 1968 and 1969, provided about 500 values each of the electrojet half-width w, its peak current intensity J0, its total eastward current I+ at 11, 12, 13, 14 and 15 h LT. The all-sector daytime average values of the parameters for the three years are 232 ± 47 A km−1 for J0, 234 ± 6 km for w and (55± 8)×103 A for I+.This first coverage of all sectors of the globe gives the first study of the diurnal variation of the total current and shows that all the three parameters vary substantially with local time; that w has minimal values around local noon; that J0 has a pronounced peak around local noon as may be expected from the diurnal variation of H; and that I+ has a broad maximum around 11 h and 12 h LT.  相似文献   

19.
Quasi-periodic (QP) radio scintillations were observed during (1987) on 244 MHz and 1.5 GHz geostationary satellite transmissions in the southern auroral zone from Davis station (68.6°S, 78.0°E geographic, 74.6°S Aλ) in Antarctica. Three distinct types of OP events were identified, with occurrence times mainly restricted to the period 18-00 MLT. The substantial loss of signal associated with these events appears to be an important factor in determining the reliability of satellite links on 1.5 GHz in auroral regions. Previous observations at mid-latitudes of QP scintillations have noted a preference for large zenith angles and equatorward azimuths. It is demonstrated that a height transition in a densely ionized layer can produce QP scintillations in a manner analogous to a dense column of ionization but at lower ionization densities, as well as demonstrating a zenith angle and azimuthal dependence that is more consistent with observations than a column of ionization. At the occurrence times noted, the raypath may be intersecting the poleward edge of the trough where sporadic-E is a regular feature. QP scintillation events may result when the Es-layer is height modulated by the passage of acoustic-gravity waves originating in the auroral zone.  相似文献   

20.
The effect of asymmetrical thermospheric winds on NmF2 at the dip I = 30° and its magnetic conjugate point have been computed for equinox conditions to study asymmetry in the ionospheric equatorial anomaly in the African and West Asian regions. The wind models of I11 et al. and Chan and Walker have been used in our computations. During the daytime, due to the winds NmF2 in the northern crest becomes greater than NmF2 in the southern crest; at night the reverse is true in both regions. It is shown that the observed asymmetry in NmF2 at the equatorial crest in the African sector can be well explained by considering the effects of asymmetrical winds with respect to those in the West Asian sector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号