首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At solar maximum during the late evening hours (2100–2400 LT), NmF2 at Tahiti frequently does not decrease monotonically but exhibits temporary subsidiary maxima. Thus, in 1980, of 66 evening periods for which good data were available, 20 showed monotonie decreases but the remainder exhibited such subsidiary maxima. In summer the subsidiary maxima correspond to hmF2 significantly lower than the monotonie decreases. This lower hmF2 during subsidiary maxima corresponds to a weakening or reversal of the equatorward neutral wind, accompanied by an increase in the flux from the equatorial fountain. In winter the subsidiary maxima are fully accounted for by increases in the flux from the fountain effect, probably due to increases in the strength of the equatorial electrojet.  相似文献   

2.
The daily variations of the meridional wind at ±18° latitude have been obtained for summer and winter between 1977 and 1979 using the in situ measurements from the Atmosphere Explorer-E (AE-E) satellite. The AE-E altitude increased from about 250 to about 450 km during this period, with solar activity increasing simultaneously. Data are presented at three altitudes, around 270, 350 and 440 km. It was possible to average the data to obtain the 24 h variations of the meridional wind simultaneously at northern and southern latitudes and thereby study the seasonal variation of the meridional wind in the altitude range covered. Two features are found showing significant seasonal variation: (a) a late afternoon maximum of the poleward wind occurring only in winter at 1800 LT at all three altitudes; (b) a night-time maximum in the equatorward wind—the summer equatorward wind abating earlier (near 2130 LT) and more rapidly than the winter wind (after 2300 LT). Furthermore, in summer the night-time wind reaches higher amplitudes than in winter. The night-time feature is consistent with the observed seasonal variation of the equatorial midnight temperature maximum, which occurs at or before midnight in summer and after midnight in winter, showing a stronger maximum in summer. The observed night-time abatement and seasonal variations in the night-time winds are in harmony with ground based observations at 18° latitude (Arecibo). The time difference found between summer and winter abatements of the night-time equatorward wind are in large part due to a difference between the phases of the summer and winter diurnal (fundamental) components, and diurnal amplitudes are larger in summer than in winter at all threee altitudes. However, the higher harmonics play an important role, their amplitudes being roughly 50% of the diurnal and in some instances larger. The 24 h variation is mainly diurnal at all altitudes in both summer and winter, except in winter around 2700 km altitude where the semi- and ter-diurnal components are approximately equal to or larger than the diurnal.  相似文献   

3.
Mean winds at 82–106 km altitude have been almost continuously monitored by the Kyoto meteor radar over the period from May 1983 to December 1985. The mean zonal wind becomes eastward with amplitudes as large as 30 m s−1 in the summer months (May–August), maximizing early in July at 95 km altitude, while it is less than 10 m s−1 at all the observed altitudes during the equinoxes. It is normally eastward in winter at low altitudes, although it sometimes becomes westward during sudden stratospheric warmings. The mean meridional wind is usually equatorward and is weaker than the zonal component. A southward wind exceeding 10 m s−1 is detected in July and August. The observed mean winds are compared with the CIRA 1972 model and coincidences with sudden warmings of changes in zonal wind direction are pointed out.  相似文献   

4.
The solar cycle, seasonal and daily variations of the geomagnetic H field at an equatorial station, Kodaikanal, and at a tropical latitude station, Alibag, are compared with corresponding variations of the E-region ionization densities. The solar cycle variation of the daily range of H at either of the stations is shown to be primarily contributed to by the corresponding variation of the electron density in the E-region of the ionosphere. The seasonal variation of the ΔH at equatorial stations, with maxima during equinoxes, is attributed primarily to the corresponding variation of the index of horizontal electric field in the E-region. The solar daily variation of ΔH at the equatorial station is attributed to the combined effects of the electron density with the maximum very close to noon and the index of electric field with the maximum around 1030 LT, the resulting current being maximum at about 1110 LT. These results are consistent with the ionosphere E-region electron horizontal velocity measurements at the equatorial electrojet station, Thumba in India.  相似文献   

5.
A study of the boundary conditions for the equatorial thermospheric transport equations by the authors has led to the theoretical prediction of the vertical electric field at the base of the F-region. Earlier, this result was applied to the calculation of the zonal wind field in the equatorial F-region. In this work, the aforementioned model is applied to the calculation of the F-region electric current field in the meridional plane as a function of time and the east-west magnetic field generated by these currents. In particular, the field at sunset is compared with the observations made by Magsat.  相似文献   

6.
The peak height of the F2 layer, hmF2, has been calculated using the ‘servo’ model of Rishbeth et al. [(1978), J. atmos. terr. Phys. 40, 767], combined with the hedin et al. [(1988), J. geophys. Res. 93, 9959] neutral wind model. The results are compared with observed values at noon and midnight derived from ionosonde measurements at two mid-latitude stations, Boulder and Wallops Island, over a full solar cycle. The reduced height of the F2 layer, zmF2, is also computed for the same period using the observed hmF2 values and the MSIS-86 model. Day-night, seasonal, and solar cycle variations in zmF2 are attributed to neutral composition changes and winds. Anomalously low values of hmF2 and zmF2 during summer both at solar minimum and during the solar cycle maximum in magnetic activity may be associated with increases in the molecular to atomic ion concentration ratio. Under these circumstances the F2 peak may lie significantly below the O+ peak height calculated by the servo model. Neutral meridional winds at Wallops Island are derived from the servo model using the observed hmF2 values and the calculated O+ ‘balance height’. It is shown that if the anomalously low hmF2 values are used, unrealistically large poleward winds are derived, which are inconsistent with both theory and observations made using other techniques. For most conditions the F2 peak is clearly an O+ peak, and daily mean winds at hmF2 derived from the servo model are consistent with the hedin et al. (1988) wind model. Unexpectedly, the results do not show an abrupt transition in the thermospheric circulation at the equinoxes. Diurnal curves of the servo model winds reveal a larger day-night difference at solar minimum than at solar maximum.  相似文献   

7.
The EISCAT incoherent scatter radar, operating in a full tristatic mode, provided data on the ionospheric plasma drift above northern Scandinavia, during the 24 h period, 11 UT 25 November to 11 UT 26 November 1982. For the hours of darkness, 14 UT until 05 UT, observations of thermospheric winds were made by means of a ground-based Fabry-Perot interferometer (FPI) operated at Kiruna Geophysical Institute (21° E, 68° N). During this period, the radar observations describe well the ebbing and flowing of regions of strong convective ion flow associated with the auroral oval. As individual geomagnetic disturbances occur, the overall ion flow pattern intensifies and moves equatorward. The zonal thermospheric wind observed by the FPI responds rapidly to surges of the local ionospheric convection, while the meridional wind response is slower and apparently to much larger-scale features of the geomagnetic input to the high latitude thermosphere. From the data base, periods of strong heating of the ionospheric ions and of the thermospheric gas can be identified, which can be compared with Joule and particle heating rates deduced from the observations of ionospheric drifts, neutral winds, electron densities and auroral emission rates. A three-dimensional, time-dependent global thermospheric model is used to distinguish local and global features of the thermospheric wind field. Meridional and zonal wind components at 312 km may be theoretically derived from the EISCAT data using an appropriate model (MSIS) for neutral temperature. The EISCAT-derived meridional wind is within about 50 m s−1 of the FPI observations throughout the period of joint observations. The EISCAT-derived zonal wind is systematically larger (by about 50%) than the FPI measurement, but the two independent measurements follow closely the same fluctuations in response to geophysical events until 03 UT, when the EISCAT solution is driven away from the FPI measurement by a sharp increase in both neutral and ion temperatures. Between 03 and 05 UT the EISCAT-derived zonal wind is 200–400 m s−1 westward. Allowance for the neutral temperature rise would reduce the EISCAT values towards the very small zonal winds shown by the FPI during this period. We describe the relatively straightforward analysis required to derive the meridional wind from the radar data and the limitations inherent in the derivation of zonal wind, using the ion energy equation, due to the lack of precise knowledge of the background neutral temperature from the EISCAT data alone. For analysis of EISCAT ion drift observations at 312 km, the ground-based FPI temperature measurements do not improve the accuracy of the analysis, since the median altitude of the FPI measurement is probably in the range 180–240 km throughout the observation period. This median altitude and the temperature gradient both fluctuate in response to local geomagnetic events, while the temperature gradient may be considerably greater than that predicted by standard atmospheric models. When the neutral temperature is well known, or when there is a large enhancement of the ion temperature, the EISCAT-derived zonal wind exceeds the FPI measurement, but the consistency with which they correlate and follow ion-drag accelerations suggests that the differences are purely due to the considerable altitude gradients which are predicted by theoretical models.  相似文献   

8.
The effect of asymmetrical thermospheric winds on NmF2 at the dip I = 30° and its magnetic conjugate point have been computed for equinox conditions to study asymmetry in the ionospheric equatorial anomaly in the African and West Asian regions. The wind models of I11 et al. and Chan and Walker have been used in our computations. During the daytime, due to the winds NmF2 in the northern crest becomes greater than NmF2 in the southern crest; at night the reverse is true in both regions. It is shown that the observed asymmetry in NmF2 at the equatorial crest in the African sector can be well explained by considering the effects of asymmetrical winds with respect to those in the West Asian sector.  相似文献   

9.
The relative importance of the equatorial plasma fountain (caused by vertical E x B drift at the equator) and neutral winds in leading to the ionospheric variations at equatorial-anomaly latitudes, with particular emphasis on conjugate-hemisphere differences, is investigated using a plasmasphere model. Values of ionospherec electron content (IEC) and peak electron density (Nmax) computed at conjugate points in the magnetic latitude range 10–30° at longitude 158°W reproduce the observed seasonal, solar activity, and latitudinal variations of IEC and Nmax, including the conjugate-hemisphere differences. The model results show that the plasma fountain, in the absence of neutral winds, produces almost identical effects at conjugate points in all seasons; neutral winds cause conjugate-hemisphere differences by modulating the fountain and moving the ionospheres at the conjugate hemispheres to different altitudes.At equinox., the neutral winds, mainly the zonal wind, modulate the fountain to supply more ionization to the northern hemisphere during evening and night-time hours and, at the same time, cause smaller chemical loss in the southern hemisphere by raising the ionosphere. The gain of ionization through the reduction in chemical loss is greater than that supplied by the fountain and causes stronger premidnight enhancements. in IEC and Nmax (with delayed peaks) in the southern hemisphere at all latitudes (10–30°). The same mechanism, but with the hemispheres of more flux and less chemical loss interchanged, causes stronger daytime IEC in the northern hemisphere at all latitudes. At solstice, the neutral winds, mainly the meridional wind, modulate the fountain differently at different altitudes and latitudes with a general interhemispheric flow from the summer to the winter hemisphere at altitudes above the F-region peaks. The interhemispheric flow causes stronger premidnight enhancements in IEC and Nmax and stronger daytime Nmax in the winter hemisphere, especially at latitudes equatorward of the anomaly crest. The altitude and latitude distributions of the daytime plasma flows combined with the longer daytime period can cause stronger daytime IEC in the summer hemisphere at all latitudes.  相似文献   

10.
As shown by statistical investigations, high speed plasma streams (HSPS) in the solar wind cause direct ionospheric effects in the D- and Es-layers at auroral and subauroral latitudes due to increasing precipitation of high energetic particles as well as indirect effects in the F2-region at high, middle and equatorial latitudes caused by auroral heating processes. The ionospheric effects increase with the strength of the HSPS and are most pronounced for HSPS during IMF pro sectors (sectors with negative Bz-component). Seasonal differences of the ionospheric response to solar velocity changes are caused by the IMF influence (maximum effect at equinoxes) as well as internal atmospheric reasons (enhanced variability during winter).  相似文献   

11.
Total electron content (TEC) data is presented for similar sites at ±35° latitude, and conjugate sites at ±20°, for several years near solar maximum. Comparison with the MSIS atmospheric model shows that the large seasonal anomaly at 35°N (an increase of 80% in TEC from October to April) is fully explained by changes in neutral composition. The small seasonal anomaly at 35°S also agrees with the MSIS model. Composition changes fail to account for the generally higher TEC in the northern hemisphere; this suggests the presence of an overall south-to-north atmospheric wind. Eastern declinations also contribute to enhanced TEC in the northern hemisphere, in the Pacific zone. The MSIS model predicts a semiannual variation of about ±25% in TEC at all sites, while observed changes are only about ±8%; thus we require some enhanced loss process near the equinoxes, particularly in September and October.Peak height calculations assuming a constant pressure level give a large semiannual variation in the F2 region: this is replaced by an annual variation when hm F2 is calculated from diffusion theory. Heights calculated from the MSIS model are similar to observed values at ±35° latitude on summer days. A decrease of about 20km in observed heights on winter days is attributed to a poleward neutral wind; this wind also reduces the observed TEC. At night the height changes correspond to an equatorial wind, which is largest in summer and equinox. Observed day time TEC is greater at 20°N than at 20°S at all times of year, suggesting a northward transequatorial wind which is strongest near January and gives increased TEC and decreased peak height at 20°N.  相似文献   

12.
Zenith observations of the oxygen λ1630 nm auroral/airglow emission (produced at an altitude of ∼220 to ∼250 km) were obtained with the Mawson Fabry-Perot Spectrometer (FPS) during three ‘zenith direction only’ observing campaigns in 1993. The data show many instances of strong (50 to 100 m s−1) upwellings in the vertical wind, when the auroral oval is located equatorward of the zenith. Our data appear consistent with the existence of a region of upwelling up to ∼ 4° poleward of the poleward boundary of the visible auroral oval, rather than short duration, explosive heating events. The upwellings are probably the vertical component of wind shear produced by reversal of the zonal thermospheric winds, which occurs near the poleward boundary of the visible auroral oval. Zenith temperature was also seen to increase when the oval was equatorward of Mawson, showing rises of up to 300 K or more. However, this increase is at times unrelated to the upwellings, and seems to be caused by the expansion of the warm polar cap over the observing site.On a number of nights the boundary between the polar cap and the auroral oval was observed to pass over our site several times, occasionally showing a quasi-periodic expansion and contraction. We speculate that this quasi-periodic movement may be related to periodic auroral activity that is known to generate large-scale gravity waves.  相似文献   

13.
The day-to-day variability of Sq(H) at equatorial stations has been studied, using the correlation between daily ranges for the IQSY at a large number of pairs of stations. It is found that the daily ranges at stations under the equatorial electrojet are significantly less well correlated with those at other equatorial stations than is the case for pairs of equatorial stations not involving an electrojet station, for comparable distances of separation of the pairs of stations.  相似文献   

14.
Since the last equatorial aeronomy meeting in 1980, our understanding of the morphology of equatorial scintillations has advanced greatly due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the GHz range has been demonstrated. The fact that night-time F-region dynamics is an important factor in controlling the magnitude of scintillations has been recognized by interpreting scintillation observations in the light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation.A distinct class of equatorial irregularities known as the bottomside sinusoidal (BSS) type has been identified. Unlike equatorial bubbles, these irregularities occur in very large patches, sometimes in excess of several thousand kilometers in the E-W direction and are associated with frequency spread on ionograms. Scintillations caused by such irregularities exist only in the VHF band, exhibit Fresnel oscillations in intensity spectra and are found to give rise to extremely long durations (~ several hours) of uninterrupted scintillations. These irregularities maximize during solstices, so that in the VHF range, scintillation morphology at an equatorial station is determined by considering occurrence characteristics of both bubble type and BSS type irregularities.The temporal structure of scintillations in relation to the in situ measurements of irregularity spatial structure within equatorial bubbles has been critically examined. A two-component irregularity spectrum with a shallow slope (p1 ~ 1.5) at long scalelengths (> 1km) and steep slope (p2 ~−3) at shorter scalelengths has been found in both vertical and horizontal spectra. Phase and intensity scintillation modelling was found to be consistent with this two-component irregularity spectrum.Finally, the information provided by the major experimental undertaking represented by Project Condor in the fields of night-time scintillations and zonal irregularity drifts with be briefly outlined.  相似文献   

15.
Spatial and temporal distributions of ionospheric scintillations have been observed at Kashima (36.0°N, 140.7°E) using VHF and UHF signals from low-altitude satellites. From these observations, three different types of prevailing ionospheric scintillations seen from Japan are identified. Scintillations of type I are rather weak scintillations, occur most frequently during the daytime in summer and are primarily associated with the sporadic E-layer. However, considerable occurrences of type I scintillations are also observed during the night in summer and autumn, not necessarily due to the sporadic E-layer but occasionally due to F-layer irregularities which originate from localized midlatitude processes. Type II scintillations are much stronger than type I and occur near the equatorward horizon during spring, summer and autumn. Their occurrences start after sunset, reach a maximum before midnight and decrease subsequently, with a tendency for negative and positive correlations with the magnetic and solar activities, respectively. It is concluded that type II scintillations are the midlatitude aftermath of equatorial plume-associated irregularities and cause trans-equatorial propagation of VHF waves. From observations of type I and II scintillations, the boundary between midlatitude and equatorial scintillations is clearly identified. Type III scintillations are as strong as type II and appear only during magnetically active periods. They can be regarded as another aspect of the severe scintillation events observed on gigahertz waves from geostationary satellites as reported by Tanaka (1981).  相似文献   

16.
The University College London Thermospheric Model and the Sheffield University Ionospheric Convection Model have been integrated and improved to produce a self-consistent coupled global thermospheric/high latitude ionospheric model. The neutral thermospheric equations for wind velocity, composition, density and energy are solved, including their full interactions with the evolution of high latitude ion drift and plasma density, as these respond to convection, precipitation, solar photoionisation and changes of the thermosphere, particularly composition and wind velocity. Four 24 h Universal Time (UT) simulations have been performed. These correspond to positive and negative values of the IMF BY component at high solar activity, for a level of moderate geomagnetic activity, for each of the June and December solstices. In this paper we will describe the seasonal and IMF reponses of the coupled ionosphere/thermosphere system, as depicted by these simulations. In the winter polar region the diurnal migration of the polar convection pattern into and out of sunlight, together with ion transport, plays a major role in the plasma density structure at F-region altitudes. In the summer polar region an increase in the proportion of molecular to atomic species, created by the global seasonal thermospheric circulation and augmented by the geomagnetic forcing, controls the plasma densities at all Universal Times. The increased destruction of F-region ions in the summer polar region reduces the mean level of ionization to similar mean levels seen in winter, despite the increased level of solar insolation. In the upper thermosphere in winter for BY negative, a tongue of plasma is transported anti-sunward over the dusk side of the polar cap. To effect this transport, co-rotation and plasma convection work in the same sense. For IMF BY positive, plasma convection and co-rotation tend to oppose so that, despite similar cross-polar cap electric fields, a smaller polar cap plasma tongue is produced, distributed more centrally across the polar cap. In the summer polar cap, the enhanced plasma destruction due to enhancement of neutral molecular species and thus a changed ionospheric composition, causes F-region plasma minima at the same locations where the polar cap plasma maxima are produced in winter.  相似文献   

17.
Monthly simulations of the solar semidiurnal tide in the 80–100 km height regime are presented. These calculations benefit from the recent heating rates provided by Groves G. V. (1982a,b) (J. atmos. terr. Phys. 44, 111; 44, 281), the zonally-averaged wind, temperature and pressure fields developed for the new COSPAR international reference atmosphere [Labitzke K., Barnett J. J. and Edwards B. (1985) Handbook for MAP 16, 318], and eddy diffusivities determined from gravity wave saturation climatologies and used by Garcia R. R. and Solomon S. (1985) (J. geophys. Res. 90, 3850) to simulate oxygen photochemistry and transport in the mesosphere and lower thermosphere. Some of the main characteristics of the observed semidiurnal tide at middle and high latitudes are reproduced in our simulations: larger amplitudes in winter months than in summer months, and the bi-modal behavior of the phase with summer-like and winter-like months separated by a quick transition around the two equinoxes. The phase transition is also more rapid in the spring, consistent with observations. The wavelengths are also longer in summer than in winter, at least below 95 km (whereas in July and August the simulations exhibit some discrepancies above this altitude), similar to the observational data. Semidiurnal amplitudes are generally smaller and the phases more seasonally symmetric at middle and low latitudes, as compared with the tidal structures above about 50° latitude. In addition, hemispheric differences in the mean zonal wind result in marked asymmetries in tidal behavior between the Arctic and Antarctic regions, and suggest that a comparative study of tide, gravity wave and mean flow interactions in the Arctic and Antarctic mesosphere and lower thermosphere would be fruitful.  相似文献   

18.
The annual variation of the daytime F2-layer peak electron density (NmF2) is studied at two low latitude stations, Okinawa and Tahiti (geomagnetic latitudes ± 15°) for the sunspot maximum years 1979–1981. Observed values are compared with those calculated using the MSIS model and a simplified version of the continuity equation for day-time equilibrium conditions. Summer-winter differences imply an intensification of the fountain effect on the winter side of the equator at the expense of the summer side. This could be explained by a summer to winter neutral wind. Semi-annual variations, however, appear to be mainly due to changes in neutral composition.  相似文献   

19.
Meridional wind estimated from the bottomside ionograms making use of other thermospheric and ionospheric data from a unique rocket experiment from SHAR, has been compared with the direct, in situ measurement of the same. The agreement is found to be well within the experimental errors.  相似文献   

20.
This paper reports on a comparison of calculated and observed monthly mean day-time ionospheric F2-peak density (NmF2) at a chain of stations from Japan to Australia for both solar minimum (1976) and solar maximum (1980). Nm values are calculated using the MSIS model for the observed peak heights (hmF2) and a simplified version of the continuity equation for day-time equilibrium conditions. The observed NmF2 values are always higher than the calculated ones in winter. This implies that a substantial downward flow of ionisation from above into the winter ionosphere is induced by the strongly poleward winter neutral wind which drives the ionisation down the field lines, lowering the peak height hmF2. In summer, winds are smaller, and the fluxes are more upward in comparison to winter. The seasonal variation of the ionisation fluxes and neutral winds are estimated for solar minimum, and compared with results of detailed calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号