首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetopause and adjacent boundary layers of the Earth's magnetosphere play important roles in transferring momentum and energy from the solar wind to the magnetosphere-ionosphere system. The details of the different boundary processes, their ionospheric signatures and relative importance are not well known at present. Particle precipitation, field-aligned current, auroral emission, ionospheric ion drift and ground magnetic perturbations are among the low-altitude parameters that show signatures of various plasma processes in the LLBL and the magnetopause current layer. Magnetic merging events, Kelvin-Helmholtz waves, and pressure pulses excited by the variable solar wind/magnetosheath plasma are examples of boundary phenomena that may be coupled to the ionosphere via field-aligned currents. In this paper, attention is focussed on a specific category of auroral activity occurring in the cusp/cleft region predominantly during the southward directed interplanetary magnetic field (IMF). Co-ordinated observations from the ground and satellites in polar orbit have been used to study the temporal/spatial development of the events in relation to the background patterns of particle precipitation and ionospheric convection as well as the field-aligned current and ion drift characteristics of the individual events. The auroral phenomenon is characterized by a sequence of elongated forms moving laterally into the polar cap. Spatial scales of major events repeating every 5–10 min are ∼200 km (N-S) times 300–1000 km (E-W). Smaller scale auroral structures with more irregular occurrence rates are observed at times. The preliminary evidence suggests that the motion pattern is regulated by the IMF orientation, that is, the direction of longitudinal motion along the polar cap boundary is determined by the IMF BY polarity. The examples reported here occurred within 1000–1400 MLT, near the zero point potential line separating the morning and post-noon convection cells. During nonzero IMF BY the auroral structures are associated with channels of enhanced zonal ionospheric ion flow and Birkeland current sheets of opposite polarity, imbedded within the larger scale IMF BY-related cusp-mantle current system. These characteristics are discussed in relation to model predictions of ionospheric signatures of magnetopause plasma transients, with particular emphasis placed on impulsive magnetic merging events.  相似文献   

2.
The dynamics of westward auroral electrojets in the course of magnetospheric substorms is studied according to the data of a meridional chain of magnetometers. It is shown that, during active phases of the substorm, the westward electrojet becomes inhomogeneous and some current filaments appear in it; some of them drift polewards, some other shift equatorwards.A method is proposed to estimate both the potential and curl parts of the magnetospheric electric field, the value of the electromagnetic energy entering the plasma sheet in the magnetotail, and the rate of Joule heating in the ionosphere based on data on the dynamics of the auroral electrojets.  相似文献   

3.
An attempt is made to reconcile two competing views as to where the auroral distribution maps from in the magnetosphere. The structure of the aurora is shown to have two distinctive parts which vary according to the magnetic activity. The low latitude portion of the structured distribution may be a near-Earth central plasma sheet phenomenon while the high latitude portion is linked more closely to boundary layer processes. During quiet times, the polar arcs may be the ionospheric signature of a source region in the deep tail low latitude boundary layer/cool plasma sheet. The structured portion of the ‘oval’ has a dominantly near-Earth nightside source and corresponds to an overlap region between isotropic 1–10 keV electrons and 0.1–1 keV structured electrons. The ionospheric local time sector between 13 and 18 MLT is the meeting point between the dayside boundary layer source region and this near-Earth nightside source. Late in the substorm expansion phase and/or start of the substorm recovery phase, the nightside magnetospheric boundaries (both the low latitude and Plasma Sheet Boundary Layers) begin to play an increasingly important role, resulting in an auroral distribution specific to the substorm recovery phase. These auroral observations provide a means of inferring important information concerning magnetospheric topology.  相似文献   

4.
One of the central issues in substorm research is what determines the substorm intensity. Through an introduction on what constitutes a magnetospheric substorm, we discuss several parameters which are available to measure the substorm intensity. In terms of ionospheric quantities, we have the auroral electroject indices, the total current in the westward auroral electrojet, the area of bright aurora, the maximum poleward advance of the auroral bulge, and the duration of auroral substorm activities. In terms of magnetospheric quantities, we have the innermost location of the substorm injection boundary and the amount of current reduction in the cross-tail current within the substorm current wedge. A measure reflecting substorm activities in both the ionosphere and the magnetosphere is the total substorm energy dissipation but its drawback lies in the difficulty of assessing it accurately if the energy loss due to plasmoids is to be included. We also discuss the predictability of substorm intensity, which leads us to the issue of whether a substorm is a directly-driven or an unloading process. The recent success in predicting the auroral electrojet index from solar wind parameters with a cross-correlation of ~ 0.9 suggests that substorm activities over a long time scale are primarily directly-driven while those over a short time scale are governed by impulsive unloading processes. This understanding allows us to reconcile the apparently conflicting dual nature of magnetospheric substorms.  相似文献   

5.
The growth rate of whistler-mode waves is calculated analytically for a bi-Maxwellian plasma in the presence of a beam of cool electrons. This beam is moving in the same direction as the gyroresonant electrons and in the opposite direction to the waves which are considered to propagate parallel (or anti-parallel) to the imposed geomagnetic field. A somewhat surprising result is found. This is that even if the anisotropy is greater than a critical value, which is strongly frequency dependent, the beam reduces the growth of the waves near half the electron gyrofrequency. For a field-aligned current density ~ 1 μA m−2, this mechanism can explain the lack of signals near 1.4 kHz on auroral (return current) flux tubes. It can also explain the observed absorption of signals at half the electron gyrofrequency, around 7 kHz on L = 4 flux tubes, near the equatorial plane and just outside the plasmapause.  相似文献   

6.
On rare occasions, observations from the DMSP-F6 and -F8 spacecraft and the Søndrestrøm incoherent scatter radar coincide in space. Such coincidence offers a unique opportunity to study temporal vs spatial variations on a small scale. We discuss data from one of those occasions, with observations made in the dawn sector in the presence of moderate auroral precipitation during a magnetically quiet period. The DMSP satellites measured vertical electron and ion flux and cross-track plasma drift while the radar measured the ionospheric electron density distribution and line-of-sight plasma velocities. We combine these data sets to construct a two-dimensional map of a possible auroral pattern above Søndrestrøm. It is characterized by the following properties. No difference is seen between the gross precipitation patterns measured along the DMSP-F6 and -F8 trajectories (separated by 32 km in magnetic east-west direction and some 4 s in travel time in magnetic north-south direction), except that they are not exactly aligned with the L shells. However, F6 and F8 observed minor differences in the small-scale structures. More significant differences are found between small-scale features in the DMSP precipitation measurements and in radar observations of the E-region plasma density distribution. These measurements are separated by 74 km, equivalent to 2.4°, in magnetic longitude, and 0–40 s in time along the spacecraft trajectories (varying with magnetic latitude). Large-scale magnetospheric-ionospheric surfaces such as plasma flow reversal, poleward boundary of the keV ion and electron precipitation, and poleward boundary of E-region ionization, coincide. The combined data suggest that the plasma flow reversal delineates the polar cap boundary, that is, the boundary between precipitation characteristic for the plasma mantle and for the plasma sheet boundary layer.  相似文献   

7.
The E-region Rocket/Radar Instability Study (Project ERRRIS) investigated in detail the plasma instabilities in the low altitude (E-region) auroral ionosphere and the sources of free energy that drive these waves. Three independent sets of experiments were launched on NASA sounding rockets from Esrange, Sweden, in 1988 and 1989, attaining apogees of 124, 129 and 176km. The lower apogee rockets were flown into the unstable auroral electrojet and encountered intense two-stream waves driven by d.c. electric fields that ranged from 35 to 115 mV/m. The higher apogee rocket returned fields and particle data from an active auroral arc, yet observed a remarkably quiescent electrojet region as the weak d.c. electric fields (~ 10–15 mV/m) there were below the threshold required to excite two-stream waves. The rocket instrumentation included electric field instruments (d.c. and wave), plasma density fluctuation (δn/n) receivers, d.c. fluxgate magnetometers, energetic particle detectors (ions and electrons), ion drift meters, and swept Langmuir probes to determine absolute plasma density and temperature. The wave experiments included spatially separated sensors to provide wave vector and phase velocity information. All three rockets were flown in conjunction with radar backscatter measurements taken by the 50MHz CUPRI system, which was the primary tool used to determine the launch conditions. Two of the rockets were flown in conjunction with plasma drift, density, and temperature measurements taken by the EISCAT incoherent scattar radar. The STARE radar also made measurements during this campaign. This paper describes the scientific objectives of these rocket/radar experiments, provides a summary of the geophysical conditions during each launch, and gives an overview of the principal rocket and radar observations.  相似文献   

8.
The association of the phase of the H and D components of the Pi(c) pulsations with the phase of the broadscale H component magnetic bays confirms that Pi(c) pulsations result from auroral electron precipitation induced conductivity enhancements of existing current systems. Statistically determined relationships between the time delays and phases of the H and D components of magnetic Pi(c) pulsations with respect to the optical pulsations are used to infer a delay between the E-region Hall and Pedersen current fluctuations associated with the pulsating electron fluxes. Theoretical modelling of an auroral pulsation patch, as per Oguti and Hayashi, is used to show that the polarization of the Pi(c) pulsations is controlled principally by the delay between the Hall and Pedersen currents and the direction of the background E-region electric field.  相似文献   

9.
Four campaigns of the Worldwide Atmospheric Gravity-wave Study (WAGS) have taken place in the European sector. On many occasions the onset of auroral activity in the evening and midnight sector, as indicated by EISCAT measurements of the electric field, was associated after a suitable delay with the detection of periodic ionospheric disturbance travelling southward over the U.K. at speeds between 500 and 1000 m s−1. The velocity and wavelength of the TIDs corresponded to large-scale atmospheric gravity-waves. The characteristic periods of the travelling disturbances were similar to the intrinsic time scales of the auroral activity for periods of 40 min or more, but variations on a time scale of 20 min or less were strongly attenuated. The r.m.s. amplitude of the auroral electric field was proportional to the r.m.s. amplitude of the HF Doppler-shift associated with the gravity-wave. The time-lag between the onset of strong auroral activity and the arrival of the travelling disturbance over the U.K. was usually about an hour, suggesting a source region about 2000 km north. Similar levels of activity in the afternoon did not appear to produce strong waves in the far field. This is possibly due to ion-drag in the daytime ionosphere although the effects of the lower sensitivity of the HF Doppler-network during daytime must also be considered.  相似文献   

10.
Zenith observations of the oxygen λ1630 nm auroral/airglow emission (produced at an altitude of ∼220 to ∼250 km) were obtained with the Mawson Fabry-Perot Spectrometer (FPS) during three ‘zenith direction only’ observing campaigns in 1993. The data show many instances of strong (50 to 100 m s−1) upwellings in the vertical wind, when the auroral oval is located equatorward of the zenith. Our data appear consistent with the existence of a region of upwelling up to ∼ 4° poleward of the poleward boundary of the visible auroral oval, rather than short duration, explosive heating events. The upwellings are probably the vertical component of wind shear produced by reversal of the zonal thermospheric winds, which occurs near the poleward boundary of the visible auroral oval. Zenith temperature was also seen to increase when the oval was equatorward of Mawson, showing rises of up to 300 K or more. However, this increase is at times unrelated to the upwellings, and seems to be caused by the expansion of the warm polar cap over the observing site.On a number of nights the boundary between the polar cap and the auroral oval was observed to pass over our site several times, occasionally showing a quasi-periodic expansion and contraction. We speculate that this quasi-periodic movement may be related to periodic auroral activity that is known to generate large-scale gravity waves.  相似文献   

11.
As shown by statistical investigations, high speed plasma streams (HSPS) in the solar wind cause direct ionospheric effects in the D- and Es-layers at auroral and subauroral latitudes due to increasing precipitation of high energetic particles as well as indirect effects in the F2-region at high, middle and equatorial latitudes caused by auroral heating processes. The ionospheric effects increase with the strength of the HSPS and are most pronounced for HSPS during IMF pro sectors (sectors with negative Bz-component). Seasonal differences of the ionospheric response to solar velocity changes are caused by the IMF influence (maximum effect at equinoxes) as well as internal atmospheric reasons (enhanced variability during winter).  相似文献   

12.
We present an interpretation, which differs from that commonly accepted, of several published case studies of the patterns of auroral electron precipitation into the high-latitude upper atmosphere in the near-midnight sector based on their mapping to the nightside magnetosphere. In our scheme bright discrete auroral structures of the oval and respective precipitation are considered to be on the field lines of the Central, or Main, Plasma Sheet at distances from 5–10 to 30–50 RE, depending on activity. This auroral electron precipitation pattern was discussed in detail by Feldstein and Galperin [(1985) Rev. Geophys.23, 217] and Galperin and Feldstein [(1991) Auroral Physics, p. 207. Cambridge University Press. It is applied and shown to be consistent with the results of case studies based on selected transpolar passes of the DE, DMSP, AUREOL-3 and Viking satellites.A diagram summarising the polar precipitation regions and their mapping from the magnetospheric plasma domains is presented. It can be considered as a modification of the Lyons and Nishida (1988) scheme which characterizes the relationship between the gross magnetospheric structure and regions of nightside auroral precipitation. The modification takes into account non-adiabatic ion motions in the tail neutral sheet, so that the ion beams characteristic of the Boundary Plasma Sheet (BPS) originate on closed field lines of the distant Central Plasma Sheet (say, at distances more than ~30 RE).  相似文献   

13.
Vertical sounding data of the polar ionosphere are used to study slant E condition (SEC) related to the development of instabilities in the ionospheric plasma. The measurements from three Arctic and three Antarctic stations located correspondingly in the polar cap, daytime cusp and auroral zone are analyzed. It is shown that the SEC daily variations in these three regions are different. Distinctions between SEC features in the opposite hemispheres are affected by the azimuthal and vertical interplanetary magnetic field (IMF) components.  相似文献   

14.
The development of an auroral arc in the midnight sector, from diffuse to discrete with subsequent large scale folding, is studied with the aid of several ground-based observations, including incoherent scatter radar, and data from a HILAT satellite pass. Ion drift velocities in the F-region, as measured by EISCAT, were consistently eastward throughout and after the whole period of development, whilst the ion temperature showed two large enhancements just prior to the appearance of the main auroral fold. The fold moved eastwards and crossed the EISCAT antenna beam, appearing as a short-lived spike in electron density at altitudes between about 100 km and 400 km. The spike in electron density came progressively later at higher altitudes. The observations are interpreted as the result of enhanced convection in the ionosphere and in the magnetosphere. The auroral arc folding is suggested to be caused by the Kelvin-Helmholtz instability in a velocity shear zone in the magnetosphere.  相似文献   

15.
EISCAT measurements of the electric field in the auroral electrojet are compared with the signature of TIDs propagating equatorward as observed by an HF-Doppler network. At night-time the onset of auroral activity is usually followed by the arrival of a TID at lower latitude. Cross-correlation of the time variations of the electric field measured by EISCAT and the frequency offset recorded by the HF-Doppler system confirms a relationship between the auroral activity and the gravity wave, indicating both the travel time and the periodicity of the wave. The relationship is especially close under quiet conditions when the cross-correlation coefficient is typically 60%, significant at 0.1%. When the observed electric field is used as input to a thermosphere-ionosphere coupled global model it predicts the time signature of the observed HF-Doppler variation reasonably well but seriously underestimates the amplitude of the disturbance. Examination of this discrepancy may lead to a better understanding of the mechanisms involved in the generation and propagation of atmospheric gravity waves.  相似文献   

16.
A model of the auroral backscatter amplitude, in the form discussed by Uspensky and Oksman et al., has been derived for the radar geometry appropriate to joint observations by the PGI auroral radars at Karmaselga and Essoyla and the EISCAT incoherent scatter radar. The model shows how refraction effects cause a strongly non-linear dependence of backscatter amplitude on electron density in the E-region. It also explains why the macro aspect sensitivity for auroral radar operating at a frequency of about 45 MHz is only 1–2 dB per degree for aspect angles greater than 5°.  相似文献   

17.
Magnetic data from a meridional chain of stations in Greenland and AL-indices of magnetic activity have been used to study the relationship between magnetic perturbations in the dayside cleft region and substorm activity in the night-time auroral zone. The analysis of 14 substorms, isolated and prolonged, has shown that intensification of westward currents in the postnoon sector of the cleft precedes or accompanies substorm development in the night-time auroral zone. Westward currents appear in the northern cleft as substorm precursors even under the adverse influence of the IMF positive By component. These currents trend to extend in the prenoon sector. To explain the relationship between the cleft currents and auroral electrojet the connection between neutral layer currents and noon Birkeland currents is proposed. This connection can be realized by means of the source region acting just inside the daytime magnetopause owing to stationary reconnection of geomagnetic field and IMF, the source region flowing downstream to the tail magnetopause.  相似文献   

18.
The range-azimuth distribution of auroral backscatter echoes received at Essoyla at frequencies of 93 and 45 MHz is predicted for a model which includes the effects of electron density, magnetic aspect angle, and the azimuth of current flow and also takes into account ionospheric refraction. The distribution is in the form of an arc with maxima of backscatter in both eastern and western wings. As the electron density increases, the intensity of the backscatter increases more rapidly and the azimuths of maximum backscatter separate even further. For currents flowing along the L-shells, the backscatter is strongest in the eastward wing. This asymmetry is intensified if the current flow is rotated anti-clockwise but if the current flow is rotated sufficiently in a clockwise direction the backscatter is stronger in the westward wing. These predictions are supported by observations made at Essoyla.  相似文献   

19.
An energetic auroral proton entering the atmosphere will, by charge exchange in collisions with atmospheric constituents, alternate between being a proton H+ and a neutral hydrogen atom H. This study provides a procedure to evaluate the auroral Doppler shifted and broadened hydrogen Balmer profile as a function of initial energy, flux, pitch angle and view angle relative to the geomagnetic field. The differential proton energy flux entering the atmosphere is deduced using ground-based measurements of Hα and Hβ from Nordlysstasjonen in Adventdalen, Longyearbyen. The main assumptions are that the geomagnetic field lines are: parallel and vertical, and that the pitch angle of the H/H+-particle is preserved in collisions with atmospheric constituents before being thermalized. This numerical method estimates the fate of the auroral H/H+-particle in the atmosphere, and from measured Doppler profiles the corresponding incoming particle flux can be deduced. Optimization of the method will continue through extensive use of observational data.  相似文献   

20.
A polar map of the occurrence rate of broad-band auroral VLF hiss in the topside ionosphere was made by a criterion of simultaneous intensity increases more than 5 dB above the quiet level at 5, 8, 16 and 20 kHz bands, using narrow-band intensity data processed from VLF electric field (50 Hz–30 kHz) tapes of 347 ISIS passes received at Syowa Station, Antarctica, between June 1976 and January 1983.The low-latitude contour of occurrence rate of 0.3 is approximately symmetric with respect to the 10–22 MLT (geomagnetic local time) meridian. It lies at 74° around 10 MLT, and extends down to 67° around 22 MLT. The high-latitude contour of 0.3 lies at invariant latitude of about 82° for all geomagnetic local times. The polar occurrence map of broad-band auroral VLF hiss is qualitatively similar to that of inverted-V electron precipitation observed by Atmospheric Explorer.(AE-D) (Huffman and Lin, 1981, American Geophys. Union, Geophysics Monograph, No. 25, p. 80), especially concerning the low-latitude boundary and axial symmetry of the 10–22 h MLT meridian.The frequency range of the broad-band auroral VLF hiss is discussed in terms of whistler Aode Cerenkov radiation by inverted-V electrons (1–30 keV) precipitated from the boundary plasma sheet. High-frequency components, above 12 kHz of whistler mode Cerenkov radiation from inverted-V electrons with energy below 40 keV, may be generated at altitudes below 3200 km along geomagnetic field lines at invariant latitudes between 70 and 77°. Low-frequency components below 2 kHz may be generated over a wide region at altitudes below 6400 km along the same field lines. Thus, the frequency range of the downgoing broad-band auroral hiss seems to be explained by the whistler mode Cerenkov radiation generated from inverted-V electrons at geocentric distances below about 2 RE (Earth's radius) along polar geomagnetic field lines of invariant latitude from 70 to 77°, since the whistler mode condition for all frequencies above 1 kHz of the downgoing hiss is not satisfied at geocentric distance of 3 re on the same field lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号