首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a technique lor oblique backscatter sounding (OBS) ionogram inversion as a diagnostic tool for the horizontally inhomogeneous structure of the ionosphere. Input data for the method include the leading edge of a backscalter ionogram that is measured through soundings in a given direction, and the vertical electron density profile measured over the sounding station or over some other site lying in the sounding direction. The method may be useful for reconstructing the two-dimensional electron density distribution in a vertical plane aligned with the direction of sounding. The inverse problem has been solved using the Newton Konlorovich method and the Tikhonov regularization method. The algorithm we have developed was tested against model data, that is, OBS ionograms synthesized using geometrical optics calculations for different models of the inhomogeneous ionosphere. Test results demonstrate that our method converges reliably, is stable to measurement errors and provides a good accuracy of reconstruction of inhomogeneous structures with scales of 100 2000 km. This indicates that this method shows promise as an operative remote diagnostic tool for ionospheric irregularities of natural and artificial origin.  相似文献   

2.
Estimates of the height of the F-layer peak based on formulations using the ionospheric transmission factor M(3000)F2 are compared with hmF2 derived from the real height analysis of digital ionograms acquired at a mid-latitude station. Based on the analysis of 27 hours of quiet data, our result shows that the M(3000)F2 methods are highly accurate and that the formulation developed by Bradley P. A. and Dudeney J. R., (1973, J. atmos. terr. Phys. 35, 2131) is most accurate.  相似文献   

3.
A technique for determining ionospheric electron distribution from oblique ionograms is presented, based on the inversion method of Reilly and Kolesar (Radio Sci. 24, 575, 1989). It makes use of an equivalent operating frequency and an additional term to account for magnetoionic effects associated with the Earth's magnetic field. The technique is demonstrated by application to synthetic oblique ionograms, and to an experimentally obtained ionogram.  相似文献   

4.
Ground-based and rocket-borne investigations were carried out in January 1981 in the Volgograd region to study space-time peculiarities of the winter anomaly in ionospheric radio wave absorption (WA). Electron-density altitude profiles Ne(h) were measured with rockets, by the coherent frequency method and by using electrostatic probes; temperature profiles T(h) were measured by a resistance thermometer: wind velocity and direction were measured by radio-observations of a chaff cloud and of the payload parachute drift. At the same time, ionospheric radio wave absorption was measured in Volgograd at two frequencies, 2.2 and 2.7 MHz, by the A1 method. The condition of the lower ionosphere could be determined from absorption data and from f min parameter data obtained from vertical sounding ionograms. “Salvo” launchings of the rockets were performed on 14 January, when absorption was anomalously large, and on 21 and 28 January, which were days of normal winter absorption.Data analysis has shown that Ne values on the day with excessive absorption exceeded the same values on a normal day at altitudes from 72 to 95 km; on 21 January Nc values exceeded those of 29 February 1980 (without WA) at all altitudes below ~ 90 km. The absorption at Volgograd on 28 January was somewhat higher than on 21 January and than at stations at higher latitude, which may be due to a stable local increase of Ne values in the altitude range 80–90 km. The temperature in the region of the Ne-enhanced values (up to the limit altitude of measurements, about 80 km) was below the standard temperature (COSPAR, 72), both on 14 January and on the normal days. Measurements carried out at night have shown that winter Nc values considerably exceeded those during the autumn. The zonal and meridional wind profiles (up to about 80 km) at Volgograd exhibit a stable eastward flux, both in the stratsophere and in the mesosphere. The value of the wind velocity meridional component on 21 January is close to zero at all altitudes. On 14 and 28 January the wind profiles show an irregular structure with large velocity gradients at all altitudes above about 50–60 km.The absorption data and f min data from a number of stations, viz. from Juliusruh to Yakutsk (in longitude) and from Arkhangel'sk to Rostov-on-Don (in latitude), show that anomalously excessive absorption occurred over a vast distance exceeding 100° of longitude at ~ 55° latitude and that, based on the dates of absorption maxima (f min), one may conclude that the source of the disturbance was moving from west to east. Data on the motion of the air as shown by rocket and radiometeoric observations, indicate the same wind direction in the stratosphere as in the mesosphere. These data and the constant pressure charts point to the conclusion that the enhanced radio absorption values at mid-latitudes may be explained by a transport of dry air rich in nitric oxide from the auroral zone towards lower latitudes. The transport is provided by a stable circumpolar vortex existing in winter time. This mechanism may explain both the normal and anomalous winter absorption, as well as the post-storm effect.  相似文献   

5.
Plasma densities obtained from EISCAT's UHF incoherent scatter system are compared with profiles inverted from the digital ionograms of a co-located dynasonde. Excellent agreement is found for the bottomside ionosphere when conditions of horizontal stratification and classical photochemical equilibrium prevail. However, departures from such conditions are frequent and intense at Tromsø. Compensating errors of EISCAT calibration and long pulse convolution are resolved by analysis of power profile data. Good agreement is recovered for tilted and more complex ionospheric structure, provided that accurate echo location data are used to confirm a common volume. Monotonic inversion of the ionograms is inadequate. Dynasonde recordings are analysed to show characteristic structure in vertical and horizontal planes as a context for EISCAT measurements along a fixed (magnetic field) direction. Incoherent scatter and modern total reflection sounding, used together and coordinated in one consistent data reduction system, could produce a far more powerful ionospheric diagnostic program than either technique seems capable of providing alone.  相似文献   

6.
This paper presents a first attempt to use oblique incidence ionograms over the 4500 km path from Sanae, Antarctica, to Grahamstown, South Africa, to deduce information about the ionosphere in the intervening regions. It is shown that existing methods for the reduction of oblique incidence ionograms to N(h) profiles give reasonable results even over the two-hop path involved. By comparison with vertical incidence ionograms made from a research ship below the reflection regions it is shown that the maximum observed frequency is normally limited by conditions at the southernmost reflection point, though this may be modified by ionospheric tilts, sunrise and sunset.  相似文献   

7.
The Arecibo Initiative in Dynamics of the Atmosphere (AIDA) '89 was a multi-instrument campaign designed to compare various mesospheric wind measurement techniques. Our emphasis here is the comparison of the incoherent scatter radar (ISR) measurements with those of a 3.175 MHz radar operating a s an imaging Doppler interferometer (1131). We have performed further analyses in order to justify the interpretation of the long term IDI measurements in terms of prevailing winds and tides. Initial comparison of 14 profiles by Hines et al., 1993, J. atmos. terr. Phys. 55, 241–288, showed good agreement between the ISR and IDI measurements up to about 80 km, with fair to poor agreement above that altitude. We have compiled statistics from 208 profiles which show that the prevailing wind and diurnal and semidiurnal tides deduced from the IDI data provide a background wind about which both the IDI and ISR winds are normally distributed over the height range from 70 to 97 km. The 3.175 MHz radar data have also been processed using an interferometry (INT) technique [Van Baelen and Richmond 1991, Radio Sts. 26, 1209–1218] and two spaced antenna (SA) techniques [Meek, 1980, J. atmos. terr. Phys. 42, 837–839; Briggs. 1984, MAP Handbook, Vol. 13, pp. 166–186] to determine the three dimensional wind vector. These are then compared with the IDI results. Tidal amplitudes and phases were calculated using the generalized analysis of Groves, 1959, S. atmos. terr. Phys. 16, 344–356, historically used on meteor wind radar data. Results show a predominance of the diurnal S11 tidal mode in the altitude range 70–110 km, reaching a maximum amplitude 45 ms−1 at 95 km, with semidiurnal amplitudes being about 10–15 ms−1 throughout the height range considered. There is evidence of the two day wave in data from 86–120 km, with amplitudes on the order of 20 ms−1.  相似文献   

8.
Vertical ozone distributions from regular Umkehr observations at Arosa, Switzerland, from 1956 to 1990 retrieved with the newly developed algorithm of mateer and Deluisi (1992, J. atmos. terr. Phys. 54, 537), using Bass-Paur absorption coefficients and described in this issue, are compared with the corresponding results obtained with the old routine [Mateer and Duetsch (1964), NCAR, Boulder, Colorado, Part I, 105 pp.], officially in use at the World Ozone Data Center at Toronto. For the period 1967–1989 they are also compared with the sounding data obtained at Payerne, Switzerland with the Brewer-Mast electrochemical instrument.The annual mean values calculated from Umkehr observations increased, using the new algorithm, in layer 4 and to a lesser extent in layers 3 and 1. They decreased strongly in layer 2 and also 6 and became smaller, too, in layers 7 and 8. The new Umkehr yields annual mean values which are much closer to the sounding results than those of the old routine. The seasonal variation shows somewhat larger differences. There are big discrepancies between the trends obtained from both Umkehr algorithms and those calculated from the soundings in the region of the ozone maximum and in the troposphere. The former discrepancies may be due to the changes in the relation between total ozone and vertical distribution which occurred during the past 20 years and which are not taken into account in the definition of the a priori profiles in the new routine. It seems that useful trends can only be obtained in layer 6 and above using Umkehr observations.  相似文献   

9.
On oblique ionograms, the maximum frequencies of the ordinary and extraordinary modes are referred to as nose frequencies. The difference in the nose frequencies depends on parameters such as the length of the propagation circuit and the direction of propagation. In this paper, the difference in nose frequencies is studied using the frequency scaling technique of Bennettet at. [(1991) Appl. Comput. Electromagn. Soc. Jl6, 192]. For long paths, an explicit formula is obtained which gives the difference approximately as a function of the local magnetic dip and azimuth of propagation at the ray mid point. For shorter paths, it is shown how analytic ray tracing can be used to determine the difference.  相似文献   

10.
This paper presents simulated ionograms calculated for a parabolic ionospheric layer containing irregularities in the form of small amplitude waves. With small amplitudes, perturbation techniques can be used enabling results for the irregular ionospheres to be calculated from the results for smooth ionospheres. This approach is relatively straightforward and avoids having to ray trace new paths each time the irregularity parameters are changed. It is, however, restricted to irregularities which do not cause multiple echoes. Irregularities with vertical wavelengths of up to a few kilometres can produce significant changes in the ionosphere over height intervals smaller than those involved in reflecting a single pulse. Consequently, in the simulation procedure, it is essential to consider not just the carrier frequency but the complete frequency spectrum of the pulse. Irregularities with vertical wavelengths of the order of 10 km or more can produce ripples in an ionogram trace. These will, of course, be more evident on ionograms with high frequency resolution. Irregularities with vertical wavelengths of up to several kilometres and amplitudes up to a few per cent can produce significant pulse spreading and splitting. The actual effects depend not just on the irregularity properties but also on the ionosonde pulse width, gain and frequency and height resolutions. Some simulations show trace splitting and quasi-horizontal traces similar in many respects to effects observed by Bowman (1987, J. atmos. terr. Phys. 49, 1007) and Bowmanet al. (1988, J. atmos. terr. Phys. 50, 797). Consequently it is suggested that, at least in some cases, small amplitude (≤3%) and small scale (≤4 km) irregularities produce the spread-ifF reported by these authors.  相似文献   

11.
12.
Slant-F traces on ionograms recorded by a modern ionosonde in a sunspot-minimum period have revealed the existence of field-aligned irregularities at times of spread-F occurrence. This appears to be the first investigation in a mid-latitude region around 36° (geomagnetic) to detect these irregularities at F2-region heights using an ionosonde. Although such traces were observed frequently near sunspot minimum they were seldom recorded for periods close to sunspot maximum. Also, for a specific spread-F event in August 1989, both the ionograms from the modern ionosonde and scintillations of 150 MHz transmissions from a Transit satellite indicate the existence in the ionosphere of periodic structures (period around 11 min). The scintillation recording also included rapidly fading signals indicative of small-scale structures. The satellite had a path close to the magnetic meridian which passed through the recording station (Brisbane, Australia). Because of the enhanced signal fluctuations in the scintillation recording on this occasion it seems likely (with the support of other evidence on the ionograms) that the small-scale structures present were field-aligned.  相似文献   

13.
The signature of the stable auroral red arc (SAR arc) as it appears on ionograms is described. The key features are a very significant increase in the amount of spread-F and a reduction in the maximum plasma density compared with regions just equatorward and poleward of the SAR arc Identification of the SAR arc signature is made by using complementary data from the global auroral imaging instrument on board the Dynamics Explorer-1 satellite.At sunspot minimum there is a positive correlation between the occurrence of spread-F on ionograms from Argentine Islands, Antarctica (65°S, 64°W; L = 2.3) and magnetic activity. In contrast, at sunspot maximum there is a weak negative correlation when the K magnetic index is less than 6. but a significant increase in spread-F occurrence at K ⩾ 6. Detailed study of ionograms shows that there are two distinct regions where considerable spread-F is observed. These are the region where SAR arcs occur and the poleward edge of the mid-latitude ionospheric trough. They are separated by a region associated with the trough minimum, where comparatively little spread-F is seen. It is suggested that the movement of these features to lower latitudes with increasing magnetic and solar activity can explain the lack of correspondence between variations of spread-F occurrence as a function of magnetic activity at sunspot maximum compared with that at sunspot minimum at Argentine Islands.  相似文献   

14.
This paper summarizes the results of measurements of the electrical conductivity σ and vertical component of the vector electric field Ez acquired from eight stratospheric balloon flights launched from Amundsen-Scott Station, South Pole, in the austral summer of 1985–1986. The major findings of this research are as follows
  • 1.(1) The data contribute to the set of global atmospheric electricity measurements and extend the work of COBB [(1977), Atmospheric electric measurements at the South Pole. In Electrical Processes in Atmospheres, Dolezalek H. and Reiter R. (eds), pp. 161–167. Steinkopf, Darmstadt, F.R.G.] to determine the electrical environment of the south polar region
  • 2.(2) The average vertical profile of the conductivity at the South Pole, when compared with profiles obtained at other Antarctic locations, suggests that the conductivity scale height may increase with increasing geomagnetic latitude across the polar cap.
  • 3.(3) The conductivity profiles measured at the South Pole and other Antarctic locations differ significantly from polar cap model profiles. On the basis of these measurements, the model profiles appear to require modification
  • 4.(4) The magnitudes of the Ez profiles were observed to vary from day-to-day by a factor of > 2
  • 5.(5) In all of the flights the air-Earth conduction current Jz, calculated as the product of Ez and σ, decreased with altitude in agreement with previous direct measurements of the air-Earth current by Cobb [( 1977), Atmospheric electric measurements at the South Pole. In Electrical Processes in Atmospheres, Dolezalek H. and Reiter R. (eds), pp. 161–167. Steinkopf, Darmstadt, F.R.G.]
  • 6.(6) The magnitude of Jz was 2–3 times larger than the global average, which can be attributed to the lower columnar resistance of the atmosphere above the high-elevation Antarctic plateau. The magnitude of Jz agrees with that observed by Cobb, if the Cobb measurements are multiplied by the Few and Weinheimer [(1986), Factor of 2 error in balloon-borne atmospheric conduction current measurements. J. geophys. Res.91, 10937] correction factor of 2
  • 7.(7) Ez from all of the flights during times of balloon float demonstrates characteristics of the classical ‘Carnegie’ diurnal variation, which is indicative of global influences on the ionospheric potential
  • 8.(8) The influence of geomagnetic activity was observed as a decrease in the amplitude of the diurnal variation of Ez with increasing geomagnetic activity index Kp, which is the predicted effect at the South Pole of the magnetospheric polar-cap potential superimposed on the ‘Carnegie’ potential variation.
  相似文献   

15.
We present an introduction to the use of phase-coherent, multi-receiver HF Doppier sounding arrays for measuring the horizontal velocity of traveling ionospheric disturbances (TID's). The point of departure is the theorem of Pfister (1971, J. atmos. terr. Phys. 33, 999) relating ray Doppler to ray zenith angle for a monostatic full reflection sounder. Retaining the simple model of a specular, smooth ionospheric reflector which is deformed by a propagating undulation, we first generalize the theorem to bistatic sounding geometry and then include the effects of amplitude in addition to phase. Next, these results are cast into an algorithm for treating multi-receiver phase sounders containing many diverse baselines, in order to obtain an accurate and unambiguous solution in the plane of wave slowness (inverse of velocity). The point spread function of this solution is controlled by process bandwidth and by array geometry. We illustrate the coherent-array approach using data from an eight receiver array during passage of a TID.  相似文献   

16.
The HF phased-array pencil beam radar at Bribie Island, Australia, used to measure horizontal movements of the ionosphere, has been calibrated using the known velocity of the sunrise terminator. The seasonal variation in the velocity of the terminator has been resolved, both in magnitude and direction.The technique uses single-station ionospheric sounding, and requires the angle of arrival and Doppler shift of ionospheric echoes to be measured as the terminator passes overhead. Pfister's theorem [(1971), J. atmos. terr. Phys. 33, 999] then allows calculation of the velocity of the reflecting surface. The difference between theory and experiment is less than 3% in speed and 2° in direction on average.  相似文献   

17.
The response of the equatorial night-time F-region to magnetic stormtime disturbances has been examined using mainly ionograms recorded at Trivandrum and magnetograms recorded at high, middle and low latitudes during the magnetic storm of 23–26 November 1986. The analysis revealed a close coupling between the equatorial F-region and high latitude magnetic field disturbances originating in solar wind-magnetosphere interactions. The presence of spread-F on ionograms during this period is found to be consistent with the Rayleigh-Taylor instability mechanism for the growth of the irregularities.  相似文献   

18.
Samples of amplitude scintillations of the radio signal from a geostationary satellite obtained at a midlatitude station near Irkutsk were processed. For calculating the fractal dimensionalities the Grassberger and Procaccia [(1983) Physica D9, 189] algorithm was used. Results of the data processing tend to divide into two groups. One group includes those realizations for which it was possible to obtain reliable estimates of dimensionality. Three of the seven realizations considered were in this group, and the fractal dimensionalities were found to be low (3.12 4.5). The other data fall within the second group; a reliable estimate of dimensionality for them is unobtainable in terms of the method used. We suppose that this is attributable to the high dimensionality of the process. Power spectra of the signals of this group are close to those with an exponent of −2. The spectra of the signals of the first group are markedly steeper. On the basis of the data analyzed it is supposed that there exist two modes of ionospheric turbulence in midlatitudes, namely the mode with low dimensionality typical of localized turbulent processes, and the mode with high dimensionality typical of homogeneous turbulence that covers an extensive region of the ionosphere.  相似文献   

19.
The Applied Research Laboratories, The University of Texas at Austin (ARL: UT), conducted a computerized ionospheric tomography (CIT) experiment called the “Mid-America CIT Experiment”, or MACE'93, from June through December, 1993. Portions of the data from this experiment have been input into various CIT algorithms to reconstruct a two-dimensional electron density image of the ionosphere. One of the CIT algorithms relies on model ionospheres to incorporate a priori information into basis functions that are used to represent the unknown ionospheric electron density structure. When global ionospheric models are used to generate the basis model ionospheres for this algorithm, the reconstructed ionospheres often underestimate the F2 peak density and some reconstructions display incorrect latitudinal electron density variation. These erroneous reconstructions are mainly caused by the global ionospheric models incorrectly modeling the ionosphere in terms of the F2 region thickness and latitudinal variations. This paper identifies an alternate set of basis ionospheres that improves the accuracy of the reconstructed ionospheres. In general, this enhancement has reduced the average per cent difference between actual and CIT reconstructed ionograms to 6% and the average absolute error between measured and CIT reconstructed f0F2 to 2.6%.  相似文献   

20.
Using satellite radio beacon transmissions, travelling ionospheric disturbances have been observed in the electron content at L = 4. Waves are a common feature at this latitude, present for at least 98% of all daylight hours. The amplitude is usually 1–4% of the mean electron content and periods range between 15 and 90 minutes. Simultaneous observation of two satellite beacons, giving an effective east-west separation of 350 km, indicated apparent east-to-west velocities of 200–700 m/s.A search was made for a likely source of the waves, using data from magnetometers and riometers, from incoherent scatter radar measurements of Joule heating, and from orbiting satellite measurements of electron influx, but no definite source could be established.It is also shown that travelling disturbances are closely related to occurrences of spread-F on ionograms at high latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号