首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wind measurements which were carried out during the MAP/WINE Campaign in northern Scandinavia between 2 December 1983 and 24 February 1984 are used to derive background winds and monthly as well as winter mean values from the ground up to 90 km altitude. These mean winds compare favourably to the wind field proposed for the revised CIRA 86, which is deduced from satellite measurements. The vertical structure of the zonal monthly means is similar in both data sets during January and February. The winter mean zonal winds are observed to be slightly stronger in the stratosphere and lower mesosphere during the MAP/WINE winter than the satellite winds proposed for CIRA 86. The long term mean meridional winds are in good agreement up to 60 km. They indicate a dominant influence of quasistationary planetary waves up to 90 km and an ageostrophic poleward flow between 60 km and 85 km over northern Scandinavia, which maximizes at 76 km at about 8 m s−1. The observed short term variability of the wind is discussed with respect to a possible impact of saturating gravity waves on the momentum budget of the middle atmosphere.  相似文献   

2.
We have simultaneously observed wind motions in the altitude range of 5–90 km by means of the MU radar, rocketsondes and radiosondes. Dominant vertical scales of wind fluctuations due to gravity waves were 2–5 km in the lower stratosphere, about 5–15 km in the upper stratosphere and longer than 15 km in the mesosphere. The increase in the vertical scale with altitude is interpreted in terms of the saturation of upward propagating gravity waves. In the stratosphere, the observed vertical wavenumber spectra showed smaller amplitudes and more gradual slopes than the model values. Furthermore, the wind velocity variance in the stratosphere increases exponentially with an e-folding height of about 9 km, implying that the gravity waves were not fully saturated. On the other hand, the spectra in the upper stratosphere and mesosphere agreed fairly well with the model spectra. The variance in the mesosphere seems to cease increase of the wave amplitudes and agrees reasonably well with the model value.  相似文献   

3.
A discussion is given of gravity wave saturation and its relation to eddy diffusion in the middle atmosphere. Attention is focused on the saturation process and some of its observable manifestations. It does not serve as a review of all related work. Although a theoretical point of view is taken, the emphasis is on which wave parameters need be measured to predict quantitatively the influence of gravity waves on eddy transport. The following considerations are stressed: the variation of spectra with observation time T; that eddy diffusivities are determined by velocity spectra; the anisotropic nature of diffusivity; a unified approach to saturation; an attempt to make eddy diffusivity more precise; the relationship between eddy diffusivity and wave dissipation.The subjects of ‘wave drag’ (momentum flux deposition) and heat flux need only be treated briefly, because they are related to eddy diffusivity in simple ways. Consideration is also given to two different theoretical mechanisms of wave saturation—wave induced convective instability and strong nonlinear wave interactions. The saturation theory is then used to predict a globally averaged height profile of vertical diffusivity in the middle atmosphere. This calculation shows that gravity waves are a major contributor to eddy diffusion from heights of 40–110 km, and that they are significant down to 20 km. A more detailed calculation of wave induced eddy diffusion, including latitudinal and seasonal variations, can be made if wave velocity spectra become available. The paper closes with recommendations for future research.  相似文献   

4.
Observations of the mean wind flow and wave motions in the stratosphere at the South Pole are presented. The atmospheric motions are determined from the tracking of a high altitude, zero-pressure balloon launched from Amundsen-Scott Station during the austral summer of 1985–1986. The balloon position was precisely monitored by an optical theodolite for a large portion of the flight so that small scale motions could be resolved. The mean flow above the pole was approximately 3ms−1. Atmospheric motions characteristic of internal gravity waves were observed with an intrinsic period of approximately 4.5 h and vertical and horizontal wavelengths of approximately 2.5km and 125km, respectively. The horizontal perturbation velocity of the observed waves was large compared to the mean horizontal flow velocity. The implication is that wave motions play a dominant role in the transport of stratospheric constituents in regions where the mean winds are light, such as over the South Pole during austral summer.  相似文献   

5.
As part of the MAP/WINE campaign (winter 1983–1984) and the MAC/SINE campaign (summer 1987) high resolution wind profiles were obtained in the upper mesosphere using the foil cloud technique. Vertical winds were derived from the fall rate of the foil clouds and are used for estimating the momentum fluxes associated with vertical wavelengths shorter than about 10 km. From the ensemble average of 15 observations over an altitude range of 74–89 km we calculate a zonal net momentum flux of +12.6 ± 4.5 m2s−2 in summer. The average of 14 measurements in winter between 73 and 85 km indicates a zonal net momentum flux of −3.7 ± 2.4 m22 s−2.  相似文献   

6.
Forty-one days of measurements of the upward flux of zonal momentum associated with internal atmospheric gravity waves propagating in the upper mesosphere and lower thermosphere, made in thirteen 2–5 day periods, in each season, for the years 1981 and 1982 are presented, and the zonal mean flow acceleration is calculated for each period. For five periods of observation the upward fluxes of both zonal and meridional momentum are presented and for these, the total mean flow acceleration is calculated. When averaged over periods of 2–5 days, the magnitude of the upward flux of zonal momentum is typically less than about 3 m2 s−1, with the largest values tending to occur in the summer and winter months, suggesting a semi-annual variation with minima at the equinoxes, although large fluctuations in magnitude and sign are possible. About 70% of the upward flux of horizontal momentum appears to be due to motions with periods less than 1 h and their contribution to the mean flow acceleration is comparable. The zonal mean flow acceleration is often in the correct sense, and of sufficient magnitude, to decelerate the zonal wind component and to balance the Coriolis torque due to the mean meridional wind, when experimental uncertainties are taken into account. When averaged over periods of around 3 days, zonal mean flow accelerations with magnitudes of up to 190 m s−1 day−1 were calculated, but more typical values are between 50 and 80 m s−1 day−1. Magnitudes of the meridional and zonal mean flow accelerations were found to be similar, so that the total mean flow acceleration is not aligned with the zonal direction in general.  相似文献   

7.
A great deal of uncertainty exists concerning the distribution of the vertical eddy diffusion coefficient of the middle atmosphere. A new technique has been developed in this laboratory in which chemical clouds are released in the middle atmosphere from a balloon platform. The expansion of the cloud is monitored by ground photography, from which the value of the eddy diffusion coefficient is calculated. The experiment was successfully tested on 9 March 1985 at Hyderabad (17.5°N, 78.6°E), India. The value of the coefficient was found to be of the order of 104 cm2 s−1 in the altitude range 10–20 km.  相似文献   

8.
The role of gravity waves for the momentum and heat budget of the atmosphere between approximately 70 and 110 km height is considered. Parameterization schemes for vertical gravity wave diffusivity, generalized Rayleigh friction, viscous force, heat conduction and kinetic energy dissipation are reviewed. Eddy diffusion parameterization and its relation to the gravity wave approach is also discussed and it is shown that principal similarities exist in both concepts, especially when irregular (stochastic) contributions to the perturbations are modeled. Special attention is paid to the dissipation of perturbation kinetic energy and its contribution to the heat budget of the mesopause region. It is concluded that the amount of energy which can be attributed to the part of the gravity wave spectrum contributing to generalized Rayleigh friction above the mesopause is of the order of 10% of the total perturbation energy.  相似文献   

9.
A two dimensional numerical model is used to compute the saturation of small scale gravity waves in the region near the critical level. The vertical wave number spectrum of horizontal velocity fluctuations in the unstable region (USR) where shear instability develops is found to be governed by wave-shear interaction and follows a theoretical saturation spectrum ~ωb2/2m3. Wave-shear interaction is also found to be responsible for the observed fact that the variance of vertical velocity fluctuations is significantly lower than the level predicted by linear gravity wave theory. On the other hand, the corresponding spectrum in the stable region (SR) following a much shallower spectrum ~m−2 is found to result from the combined effects of wave-wave interactions and eddy diffusion. The key step in our simulation is the separate parameterization of horizontal and vertical eddy diffusion coefficients instead of a constant molecular viscosity coefficient.  相似文献   

10.
In view of the recent observations on the presence of vertical winds in the equatorial ionosphere in the evening and night-time, the role of vertical winds in the Rayleigh-Taylor (R-T) mode instability has been re-examined. The mathematical treatment of Chiu and Straus, earlier developd for a case of horizontal winds, is extended to evaluate the role of vertical winds in causing the R-T mode instability. It is shown that the vertical (downward) winds of small magnitude have a very significant effect on the instability growth rate in the. F-region. A downward wind of l m s−1 can cause the same growth rate as a 200 m s−1 eastward wind at 260 km altitude. Furthermore, a downward wind of 16m s−1 at 300 km can be as effective as that due to the gravitational drift itself. Similarly, an upward wind can inhibit the instability on the bottomside of the F-region. It appears that the polarity of the vertical winds (upward or downward) at the base of the F-layer plays an important role in the growth of the R-T mode plasma instability in the equatorial ionosphere.  相似文献   

11.
Five foil chaff and two falling sphere rockets flown during the MAC/SINE Campaign on 15 July 1987 at Andenes, Northern Norway (69°17′N). From these rocket measurements, turbulent energy dissipation rates, vertical wind shears and Richardson numbers as functions of height were derived in the range from 82 to 92km. Turbulent energy dissipation rates generally range from 1.4 × 10−5 to 2.0 × 10−2W/kg and are consistent with other experiments performed at the same latitude. Strong wind shears of the order of 50–90 m/s/km are observed at various heights. Good correspondence between turbulence intensity peaks, regions of strong wind shear and low Richardson number is found. Vertical wavenumber spectra of the five scalar winds measured by the foil chaff rockets indicate that there is an excellent agreement with the saturation hypothesis, suggesting that the turbulence intensity peaks measured in this salvo are linked directly to the saturation of gravity wave motions via dynamical instabilities.  相似文献   

12.
Observations made on 10 July 1987 with the EISCAT UHF radar are presented. The F-region measurements of both electron density and field-aligned ion velocity show that an upward propagating gravity wave with a period of about 1 h is present. The origin of the gravity wave is probably auroral. The E-region ion velocities show a tidal wave and both upward and downward propagating gravity waves. The gravity waves have three dominant periods with a possible harmonic relationship and similar vertical wavelengths. These waves are either reflected at a single reflection level, ducted between two levels, or they are generated in a non-linear interaction between gravity and tidal waves. The E-region electron density is dominated by particle precipitation. After a short burst of more intense precipitation, a sporadic E-layer forms at 105km and then disappears 40min later. Within this time, the layer rises and falls by a few kilometres, following closely the motion of a convergent null in the velocity profile. We suggest that the formation and destruction of this layer is controlled by both the precipitation, which indirectly provides a source of metal ions through charge exchange, and the superposition of gravity waves and the tidal wave.  相似文献   

13.
This paper examines the feasibility of deriving a climatology of the diurnal variations of the wind in the 85–120 km region from the tidal components of temperature, density, and composition contained in the new COSPAR International Reference Atmosphere, CIRA-1986, Part I: Thermosphere Models [(1988), Adv. Space Res.8, 9]. To derive the wind field, we used the zonal and meridional momentum equations which have been modified from the characteristic scales of the tidal components observed in the 85–120 km region. The CIRA temperature and density model was used to derive the eastward (westerly) and northward (southerly) pressure gradient forces which serve as the forcing functions in the coupled momentum equations. Ground-based wind data from the Mesosphere-Lower Thermosphere (MLT) radar network is used as an independent data set to check the accuracy of the derived tidal wind model. At midlatitudes, the model reproduces some of the general features observed in the radar tidal data, such as the dominant semidiurnal tide with increasing amplitude with height and clockwise (counterclockwise) rotation of the velocity vector observed in the northern (southern) hemisphere. The model overestimates the semidiurnal amplitudes observed by radar by 50–75% during most seasons with the best agreement found during the equinoctial months. The model exhibits little phase variation with height or season, whereas the radar data exhibit a downward phase progression during most seasons (other than summer) characteristic of upward propagating tidal waves, and large seasonal phase variations associated with seasonal changes in vertical wavelengths. The diurnal tidal amplitudes, which are generally 5–20 m s−1 at mid-latitude radar stations and are dominant over the semidiurnal amplitudes at lower latitudes, are less than 5 m s−1 at all latitudes in the model.  相似文献   

14.
The O2 atmospheric (0–1) night airglow emitted within the gravity wave saturation region at ∼90–100 km can serve as a means of studying the wave activity. In this analysis, the atmospheric motions were described by a mean spectral model and an algorithm was developed to infer the wave kinetic energy density and momentum flux from variations in O2 (0–1) airglow emission rate and rotational temperature. The method was applied to eight nights of data collected by MORTI, a mesopause oxygen rotational temperature imager, during the AIDA campaign of 1989 in Puerto Rico (18°N, 67°W). The observed r.m.s. fractional fluctuations of airglow emission rate and rotational temperature were of the order of ∼0.07–0.15 and ∼0.02–0.04, respectively, and the characteristic vertical wavelengths were estimated at ∼10 2 -20 km. The inferred r.m.s. horizontal velocities and velocity variances were found to be ∼12–25 m/s and ∼150–600 m2/s2, with the majority of the horizontal velocity and its variance associated with low-frequency, large-scale wave motions. The estimated momentum fluxes, mainly contributed by high-frequency, small-scale waves, were ∼2–10 m2/s2. These results are in good agreement with those obtained from other measurements using different observational methods at low and mid-latitudes.  相似文献   

15.
Vertically propagating gravity waves can transport momentum and energy from the troposphere up to the mesosphere and thus modify the circulation of the middle atmosphere. The effects of regional gravity wave sources, together with temporal changes of gravity wave activity, are studied under solstice conditions in a 3-D circulation model using a simplified parameterization scheme for the gravity momentum deposition. In this way we can reproduce the reversal of the mean zonal wind with height and very low temperatures at the summer mesopause region. Using a stochastic forcing by taking the gravity wave parameters at random, characteristic oscillations are found with periods in the planetary scale range (2, 4 and 5 days) and in the tidal range (1 day, 16 h and 12 h).  相似文献   

16.
Owing to the high conductivity along magnetic field lines, the stability of the night-time equatorial F-region is determined by magnetic field line integrated quantities. However, slow vertical diffusion near the magnetic equator plus the rapid increase in ion chemistry rates at lower altitude combine to give a very small positive scale height for the electron concentration on the bottomside of the region. As a result, the field line averaged quantities are reasonably approximated by their equatorial values, provided that the E-region does not contribute significantly. The time-dependent behavior of the growth rate for the Rayleigh-Taylor gravitational instability on the F-region bottomside is examined here as a function of the vertical E × B drift velocity using reasonable chemistry to obtain approximate equatorial vertical profiles of ionospheric parameters. It is found that the growth rate exceeds the chemical recombination rate over most of the bottomside F-layer even without vertical drift, but that a realistic E × B drift can result, after about 1 h, in an increase of this growth rate by an order of magnitude. The absolute growth rate is so small (< 10−3 s−1) with zero vertical drift that a seeding mechanism would probably be required for the formation of bubbles. The rapid appearance of bubbles shortly after sunset appears likely only after a period of upward drift, as is observed.  相似文献   

17.
Measurements of auroral-zone X-rays during rocket flights over Alaska in March 1978 have been analyzed to obtain angular distributions of electron bremsstrahlung in the atmosphere at altitudes of 45–65 km. The rockets carried passively collimated sodium iodide scintillation detectors which recorded X-rays in four energy ranges: > 5 keV, > 10 keV, > 20 keV and > 40 keV. Widespread precipitation events typical of post-breakup auroral activity have been examined. These measurements were made possible on two rocket flights: for one, large amplitude oscillations of the payload with respect to the vertical following parachute deployment allowed sampling of the angular distribution in the upper hemisphere (downward propagating X-rays), while on the other rocket, failure of the parachute system resulted in a tumbling motion of the payload which permitted measurements in both hemispheres (nadir/zenith). The observations reveal an angular distribution for X-rays in the atmosphere at depths (45–65 km) well below the production region, which is approximately isotropic in both hemispheres but with energy dependent ratios of the up/down components; the upward (backscattered) component is a small fraction (1–10%) of the total X-ray flux for 5–40 keV at the greatest altitude examined (65 km). At energies below 40 keV the energy spectrum for downward propagating X-rays hardens rapidly with increasing atmospheric depth, due to the photoelectric absorption at low energies, whereas the backscattered spectrum hardens only slightly in the middle atmosphere, maintaining an equilibrium-like form of diminishing intensity with depth. The present experimental results, apparently unique, are compared with theoretical calculations concerning the angular distribution of atmospheric bremsstrahlung.  相似文献   

18.
An energetic auroral proton entering the atmosphere will alternate between being a proton and a neutral hydrogen atom by charge-exchange collisions with atmospheric constituents. This study uses a simple procedure to evaluate the energy degradation of the penetrating protons/hydrogen atoms by using semi-empirical range relations in air, and derives the particle energy variation as a function of altitude, starting from proton spectra observed from rockets above the main collision region. The main assumptions are that the geomagnetic field is homogeneous and vertical and that the pitch angle of the proton/hydrogen atom is preserved in collisions with atmospheric constituents before being thermalized. The calculations show that the incoming particle flux first loses the low energy particles at the highest pitch angles, even if the beam itself widens as it penetrates the atmosphere. The largest energy loss for particles with initial energy between 10 and 1000 keV occurs in the height interval between 100 and 125 km.  相似文献   

19.
A high resolution wind observation of the mesosphere and lower thermosphere (73–95 km) was conducted with the aid of the high power UHF Doppler radar at Arecibo (18.4°N, 66.8°W). Zonal wind velocities were continuously observed during day-time hours on 1–15 August 1980. We discuss here the observed wind fluctuations with periods of 1–4 h in the light of internal gravity waves. The phase propagation associated with these fluctuations is, on average, shown to be downward, indicating an upward energy flux. A space-time spectral analysis shows that waves with vertical wavelengths shorter than 10 km disappear around the mesopause (about 85km), while those with longer vertical wavelengths exist throughout the observational height. This result is explained in terms of wave absorption at a critical layer where the mean zonal wind has a westerly shear with height. This feature is consistent with the behavior expected for internal gravity waves around the summer mesopause in order to explain general circulation models.  相似文献   

20.
A modelling study has been carried out of field-aligned ion flows in the topside ionospheres of conjugate hemispheres under solstice conditions at mid to low latitudes. In the model calculations coupled time-dependent O+, H+ and electron continuity, momentum and heat balance equations are solved along dipole magnetic field lines at L = 1.5 and 3.0 Sunspot medium and sunspot minimum atmospheric conditions are considered.It has been found that thermal coupling between conjugate hemispheres gives rise to strong flows of O+ in the topside ionosphere of the summer hemisphere that are directed upwards at conjugate sunrise and directed downwards at conjugate sunset. At conjugate sunrise in the winter hemisphere there is a small upward-directed signature in the O+ field-aligned flux; there is no observable signature in the O+ field-aligned flux in the winter hemisphere at conjugate sunset. There are strong upward and downward flows of O+ at local sunrise and local sunset, respectively, in both the summer and winter hemispheres.At both L = 1.5 and 3.0 the 24 h time-integrated interhemispheric H+ flux is in the direction summer hemisphere to winter hemisphere. At L = 1.5 its magnitude is in good agreement with the magnitude of the 24 h time-integrated plasma (O+ + H+) field-aligned flux at 1000 km altitude; there are no such agreements at L = 3.0.A study of the roles played by the individual terms of the O+ momentum equation has demonstrated the complex structure of momentum balance. Certain of the terms may be orders of magnitude greater than the combined total of the individual terms, i.e. the O+ field-aligned flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号