首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the middle atmospheric response to the 27-day and 11-yr solar UV flux variations at low to middle latitudes using a two-dimensional photochemical model. The model reproduced most features of the observed 27-day sensitivity and phase lag of the profile ozone response in the upper stratosphere and lower mesosphere, with a maximum sensitivity of +0.51% per 1% change in 205 nm flux. The model also reproduced the observed transition to a negative phase lag above 2 mb, reflecting the increasing importance with height of the solar modulated HOx chemistry on the ozone response above 45 km. The rnodel revealed the general anti-correlation of ozone and solar UV at 65–75 km, and simulated strong UV responses of water vapor and HOx species in the mesosphere. Consistent with previous 1D model studies, the observed upper mesospheric positive ozone response averaged over ±40° was simulated only when the model water vapor concentrations above 75 km were significantly reduced relative to current observations. Including the observed temperature-UV response in the model to account for temperature-chemistry feedback improved the model agreement with observations in the middle mesosphere, but did not improve the overall agreement above 75 km or in the stratosphere for all time periods considered. Consistent with the short photochemical time scales in the upper stratosphere, the model computed ozone-UV sensitivity was similar for the 27-day and 11-yr variations in this region. However, unlike the 27-day variation, the model simulation of the 11-yr solar cycle revealed a positive ozone-UV response throughout the mesosphere due to the large depletion of water vapor and reduced HOx-UV sensitivity. A small negative ozone response at 65–75 km was obtained in the 11-yr simulation when temperature-chemistry feedback was included,In agreement with observations, the model computed a low to middle latitude total ozone phase lag of +3 days and a sensitivity of +0.077% per 1% change in 205 nm flux for the 27-day solar variation, and a total ozone sensitivity of +0.27% for the 11-yr solar cycle. This factor of 3 sensitivity difference is indicative of the photochemical time constant for ozone in the lower stratosphere which is comparable to the 27-day solar rotation period but is much shorter than the 11-yr solar cycle.  相似文献   

2.
The variation of temperature in the middle atmosphere (15–80 km) at Volgograd (49°N, 44°E) during an 11-year solar cycle (1971–1982) has been studied. The temperature of the stratosphere did not show any significant influence of the sunspot cycle, but the temperatures of the mesosphere showed a strong in-phase relationship with the solar cycle. Computed correlation and regression coefficients were positive and highly significant in this region. At 60 and 70km the temperature variations were almost linearly related to the sunspot number. Seasonal studies indicated that solar activity has a much stronger influence on temperature during the winter than during the summer.  相似文献   

3.
Global total ozone does not show any evident connection during the period 1958–1984 with 10.7 cm solar flux (F10.7). However, when the data are separated according to the east or west phase of the Quasi-Biennial-Oscillation (Q.B.O.) in the equatorial stratosphere, the following connection is found: when the Q.B.O. is in its west phase the global total ozone is positively correlated with the solar cycle; the opposite holds for the east phase of the Q.B.O.  相似文献   

4.
A solar dependence of wind parameters below 100 km was found by Sprenger and Schminder on the basis of long-term continuous ionospheric drift measurements (D1) in the l.f. range. For winter they obtained for the prevailing wind a positive correlation with solar activity and for the amplitude of the semi-diurnal tidal wind a negative correlation. Later on this result was confirmed by radar meteor wind measurements (D2) at Obninsk and further D1 measurements at KÜhlungsborn and Collm.However, after the years 1973–1974 a change in the behaviour of the zonal prevailing wind was observed. At this time we found a significant negative correlation with solar activity with an indication of a new change after 1983. This was obtained from D1 results in Collm and D2 results in Kühlungsborn not only for winter, but also for summer and even for annual averages. We conclude that this long-term behaviour points rather to a climatic variation with an internal atmospheric cause than to a direct solar control. The negative correlation with solar activity of the semi-diurnal tidal wind in winter remained unchanged (up to 1984) and also proved to be the same in summer and for annual averages. Recent satellite data of the solar u.v. radiation and the upper stratospheric ozone have shown that the possible variation of the thermal tidal excitation during the solar cycle amounts to only a few per cent. This is, therefore, insufficient to account for the 40–70% variation of the tidal amplitudes. Some other possibilities of explaining this result are discussed.  相似文献   

5.
The seasonal variation of the efficiency of solar flares in producing sudden field anomalies (SFAs) on 164 kHz, reported by Letfus and Nestorov (1977), has been investigated for the complete 20th solar cycle. This variation persists with one exception of the solar cycle minimum, when the efficiency considerably decreases. The results of Mitraet al. (1964) giving threshold solar radio flux for an SID occurrence have been found to be incorrect.  相似文献   

6.
The (30 mb) stratospheric temperatures at the North Pole during the winter months (November–February) showed large QBO (Quasibiennial Oscillations) but of an intermittent nature, different for different months and not matching in phase with the QBO of the tropical zonal wind. When the QBO was minimized by moving averages over two successive (yearly winter) values and then further over three successive values, the resultant series showed clear solar cycle variations with lags or leads of ~ (0–2) yr for temperature maxima with respect to sunspot maxima. However, in solar cycle 21 from 1978 onwards, temperatures seem to be more depressed, indicating enhanced stratospheric cooling in recent years, probably due to an increase of greenhouse gases. No relationship with El Nino events is indicated.  相似文献   

7.
Solar data have been used as parameters in a great number of studies concerning variations of the physical conditions in the Earth's upper atmosphere. The varying solar activity is distinctly represented by the 11-yr cycle in the number of sunspots. The length of this sunspot period is not fixed. Actually, it varies with a period of 80–90 yr. Recently, this variation has been found to be strongly correlated with long-term variations in the global temperature. Information about northernhemisphere temperature based on proxy data is available back to the second half of the sixteenth century. Systematic monitoring of solar data did not take place prior to 1750. Therefore, a critical assessment of existing and proxy solar data prior to 1750 is reported and tables of epochs of sunspot minima as well as sunspot cycle lengths covering the interval 1500–1990 are presented. The tabulated cycle lengths are compared with reconstructed and instrumental temperature series through four centuries. The correlation between solar activity and northern hemisphere land surface temperature is confirmed.  相似文献   

8.
Evidence for a temperature variation above about 55 km between years of high and low solar activity is found in rocket data of Volgograd (49°N, 44°E) 1969–1983, reaching a solar-cycle amplitude of 6K, whereas below 55 km no statistically significant solar cycle effect is detected. This mesospheric temperature variation is in qualitative agreement with a pressure variation at 80 km derived from lower ionosphere radio reflection heights near 51°N, 13°E, measured at Kühlungsborn/GDR, covering almost two solar cycles. When the solar cycle variation has been removed from these 80 km pressure data by means of a regression analysis, there remains a quasi-cycle of about 20 yr, which agrees well with observations of a general cooling of the northern mid-latitude stratosphere between 1965 and 1977, reported by other authors.  相似文献   

9.
Hourly values of IEC and of f0F2 (critical frequency) for a low latitude station, Hawaii (21.2°N, 157.7°W), during the solar maxima (1969 and 1981) and minima (1965 and 1985) years of two consecutive solar cycles, 20 and 21, are used to study the day to day variabilities of the ionospheric parameters IEC and NP. It is found that there is good correspondence in the day to day variations of IEC and NP from one solar cycle to the other for both solar maximum and minimum years in the two solar cycles. Depending on solar phase and season, while the mean daytime IEC and NP variations range from about 20% to 35%, the mean night time values vary from about 25% to 60%. The mean daytime variations in NP for the solar minimum phase are remarkably higher in all the three seasons compared to the solar maximum phase. However, no such increase is observed in the mean daytime IEC variations, indicating the highly variable nature of the daytime ionospheric F region compared to the topside during solar minimum for this low latitude station. The winter night time IEC also seems to be a relatively stable parameter during the solar minimum. The short term day to day variabilities of the day time peak values of IEC and NP (ie IECmax and NPmax) are not closely associated with the variations in F10.7 solar flux. Contrary to the common expectation, the variabilities in both the parameters, particularly in NPmax, are somewhat reduced during the solar maximum (when the variability in F10.7 solar flux is much higher compared to the solar minimum) which is more evident in the stronger 21 solar cycle. A larger number of significant components are seen in the spectra of the percentage variation of both IECmax and NPmax during both solar phases of the two solar cycles compared to the corresponding F10.7 solar flux spectra. The number of additional components for both the parameters with periods less than 15 days are more for the low solar activity years than for the solar maximum years.  相似文献   

10.
An analysis is presented of the long-term mean pressure latitude seasonal distribution of tropospheric and lower stratospheric ozone for the four seasons covering, in part, over 20 years of ozonesonde data. The observed patterns show minimum ozone mixing ratios in the equatorial and tropical troposphere except in regions where net photochemical production is dominant. In the middle and upper troposphere, and low stratosphere to 50 mb, ozone increases from the tropics to subpolar latitudes of both hemispheres. In mid stratosphere, the ozone mixing ratio is a maximum over the tropics. The observed vertical ozone gradient is small in the troposphere but increases rapidly above the tropopause. The seasonal variation at a typical mid latitude station (Hohenpeissenberg) shows a summer maximum in the low to middle troposphere, shifting to a winter-spring maximum in the upper troposphere and lower stratosphere and spring -summer maximum at 10 mb. The amplitude of the annual variation increases from a minimum in the tropics to a maximum in polar regions. Also, the amplitude increases with height at all latitudes up to about 30 mb where the phase of the annual variation changes abruptly. The phase of the annual variation is during spring in the boundary layer, summer in mid troposphere, and spring in the upper troposphere and lower stratosphere. The annual long-term ozone trends are significantly positive at about + 1.2% yr in mid troposphere (500 mb) and significantly negative at about − 0.6% yr1 in the lower stratosphere(50mb)  相似文献   

11.
The seasonal behavior of low latitude mesospheric ozone, as observed by the SMM satellite solar occultation experiment, is detailed for the 1985–1989 period. Annual as well as semi-annual waves are observed in the 50–70 km altitude region. In the latitude range of ±30 the ozone phase and amplitude are functions of temperature and seasonal changes in solar flux. Temperature is the controlling factor for the equatorial region and seasonal changes in solar flux become more dominant at latitudes outside the equatorial zone (greater than ±15). There is a hemispheric asymmetry in the ozone annual wave in the 20 30 region, with northern hemispheric ozone having a larger amplitude than southern hemispheric ozone. In this region temperature is nearly in phase with ozone in both hemispheres and is reduced in amplitude in the northern hemisphere. The equatorial region is characterized by a strong semi-annual wave in addition to the annual variation, and temperature is nearly out of phase with ozone. At all latitudes there is a larger ozone concentration at sunrise than at sunset. The sunrise sunset difference increases with increasing altitude  相似文献   

12.
Temperature and wind behavior observed during the February 1979 solar eclipse shows significant change immediately following and up to one hour after totality. Statospheric and mesospheric data obtained from Fort Churchill, Manitoba, indicate quite clearly a cooling trend between 50–60 kilometers with the maximum temperature decrease of approximately 10°C evident above 52 kilometers. This temperature perturbation was accompanied by an amplification of the meridional wind speed of 20–30 mps near 60 kilometers. These results are essentially in agreement with those obtained at Wallops Island during the March 1970 solar eclipse. Although the stratosphere was under the large-scale influence of a stratospheric warming, the short-term perturbations caused by radiative changes as a result of the solar eclipse did not appear to be masked.  相似文献   

13.
Superposed epoch analysis of the daily values of atmospheric total ozone at 70 stations for the period 1972–1975, with solar magnetic sector boundary passage (M.S.B.) past the earth as the key day, suggests large variations in high latitudes and larger variations in winter than in summer. Similar analysis with the day on which the boundary crossed the central meridian of the sun as key day does not reveal discernible ozone variations on the day of sector crossing. It is inferred that the link between solar activity and total ozone variation may be corpuscular radiation. A speculative hypothesis is proposed that the Mev solar Protons in the solar wind may be causing the variation in atmospheric ozone in association with the solar magnetic sector boundary passage.  相似文献   

14.
The peak height of the F2 layer, hmF2, has been calculated using the ‘servo’ model of Rishbeth et al. [(1978), J. atmos. terr. Phys. 40, 767], combined with the hedin et al. [(1988), J. geophys. Res. 93, 9959] neutral wind model. The results are compared with observed values at noon and midnight derived from ionosonde measurements at two mid-latitude stations, Boulder and Wallops Island, over a full solar cycle. The reduced height of the F2 layer, zmF2, is also computed for the same period using the observed hmF2 values and the MSIS-86 model. Day-night, seasonal, and solar cycle variations in zmF2 are attributed to neutral composition changes and winds. Anomalously low values of hmF2 and zmF2 during summer both at solar minimum and during the solar cycle maximum in magnetic activity may be associated with increases in the molecular to atomic ion concentration ratio. Under these circumstances the F2 peak may lie significantly below the O+ peak height calculated by the servo model. Neutral meridional winds at Wallops Island are derived from the servo model using the observed hmF2 values and the calculated O+ ‘balance height’. It is shown that if the anomalously low hmF2 values are used, unrealistically large poleward winds are derived, which are inconsistent with both theory and observations made using other techniques. For most conditions the F2 peak is clearly an O+ peak, and daily mean winds at hmF2 derived from the servo model are consistent with the hedin et al. (1988) wind model. Unexpectedly, the results do not show an abrupt transition in the thermospheric circulation at the equinoxes. Diurnal curves of the servo model winds reveal a larger day-night difference at solar minimum than at solar maximum.  相似文献   

15.
An analysis of long term meteor radar wind measurements for three temperature latitude stations shows that significant solar cycle oscillations with periods of 22 years and 11 years can be detected in the data.  相似文献   

16.
Linear correlations between the three solar cycles in the period 1956–1987 and high-latitude stratospheric temperatures and geopotential heights show no associations. However, when the data are stratified according to the east or west phase of the quasi-biennial-oscillation (QBO) in the equatorial stratosphere significant correlations result: when the QBO was in its west phase the polar data were positively correlated with the solar cycle while those in middle and low latitudes were negatively correlated. The converse holds for the east phase of the QBO. Marked relationships existed throughout the troposphere too.No major mid-winter warming occurred in the west phase of the QBO during a minimum in the three solar cycles. In the east phase major warmings tended to take place in the minima of the cycle. Thus the signal of the quasi-biennial-oscillation in the extratropical stratosphere tends to be strengthened in solar minima, and weakened in solar maxima.  相似文献   

17.
This paper reports on investigation of the photospheric magnetic fieldline footpoint motion (usually referred to as shear motion) and magnetic flux emerging from below the surface in relation to energy storage in a solar flare. These causality relationships are demonstrated by using numerical magnetohydrodynamic simulations. From these results, one may conclude that the energy stored in solar flares is in the form of currents. The dynamic process through which these currents reach a critical value is discussed as well as how these currents lead to energy release, such as the explosive events of solar flares.  相似文献   

18.
Observations of the OH (8-3) band airglow emission, using a multichannel tilting filter type photometer, have been carried out at Calgary (51°N, 114°W), Canada, since 1981. In this paper recent measurements of the nocturnal, seasonal and solar flux variations of the mesopause temperature, obtained from the rotational temperature of the OH (8-3) band observations, are presented. The data presented span the ascending phase of the present solar cycle viz. 1987–1988 (low solar activity) and 1990 (high solar activity). Good correlations (r = 0.73) between the OH (8-3) band rotational temperature and the 10.7 cm solar flux were observed. The mean temperature for the period investigated was about 210 K. The seasonally averaged nocturnal variations show only small irregular excursions, possibly associated with solar tides and the passage of gravity waves in the mesopause region. However, the observed rotational temperatures show considerable night-to-night changes.  相似文献   

19.
The solar eclipse of 26 February 1979 was observed from Red Lake, Canada, (52 °N, 91 °W) where totality occurred at about 1053 local time. Several research groups and government agencies participated in an extensive ground- and rocket-based observational program directed at the middle atmosphere. At the time of the eclipse, an extensive geomagnetic storm was in progress and the middle atmosphere was undergoing temperature and circulation changes associated with a stratospheric warming. Concurrent observations of atmospheric constituents, solar radiation, electron flux and other middle atmosphere parameters were obtained as inputs for a D-region predictive chemical computer code, DAIRCHEM, tailored to eclipse conditions. Ion pair production rates were computed by an E-region infrared radiance model and were used as necessary source function input values for DAIRCHEM computations. The computations yielded predictions of electron and total positive ion densities about totality. The positive ion measurements of a supersonic Gerdien condenser and a subsonic blunt probe during the eclipse were in agreement with the model computations and provided normalizing summations of total positive ions for the interpretation of mass spectrometer measurements. The chemical computer code identified principal routes for increase and removal of key species such as O2+, NO+, hydrated clusters and negative ions. The dominant precursor ion for pair production hydrates was O2+ and the chemistry was characteristic of the disturbed D-region.  相似文献   

20.
Some key observational evidence, that throws light on current 3 questions regarding the Antarctic ozone hole, is discussed. Together with dynamical theory and high-resolution numerical modelling results, the observed facts indicate that the problem has a very high degree of spatio-temporal structure in that sharp distinctions need to be made, for instance, between September and October behaviour, between behaviour near 50mb and near 100mb, and between soundings taken well inside, near the edge of, and outside the polar vortex. In winter and early spring the interior of the vortex probably behaves as an isolated material entity (at least on isentropic surfaces above about 70mb), while outside the vortex the ozone column is being increased in the classical, transport related manner, including the effect of relatively strong diabatic descent. Statistical constructs that blur these distinctions may miss important clues. The weight of evidence (as of August 1987) makes it difficult to escape the conclusion that substantial chemical destruction of ozone takes place inside the vortex in September, as originally postulated by Farmanet al.Nature315, 207 (1985).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号