首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We documented the porosity, permeability, pore geometry, pore type, textural anisotropy, and capillary pressure of carbonate rock samples collected along basin‐bounding normal faults in central Italy. The study samples consist of one Mesozoic platform carbonate host rock with low porosity and permeability, four fractured host rocks of the damage zones, and four fault rocks of the fault cores. The four fractured samples have high secondary porosity, due to elongated, connected, soft pores that provide fluid pathways in the damage zone. We modeled this zone as an elastic cracked medium, and used the Budiansky–O'Connell correlation to compute its permeability from the measured elastic moduli. This correlation can be applied only to fractured rocks with large secondary porosity and high‐aspect ratio pores. The four fault rock samples are made up of survivor clasts embedded in fine carbonate matrices and cements with sub‐spherical, stiff pores. The low porosity and permeability of these rocks, and their high values of capillary pressure, are consistent with the fault core sealing as much as 77 and 140 m of gas and oil columns, respectively. We modeled the fault core as a granular medium, and used the Kozeny–Carmen correlation, assigning the value of 5 to the Kozeny constant, to compute its permeability from the measured porosities and pore radii. The permeability structure of the normal faults is composed of two main units with unique hydraulic characteristics: a granular fault core that acts as a seal to cross‐fault fluid flow, and an elastic cracked damage zone that surrounds the core and forms a conduit for fluid flow. Transient pathways for along‐fault fluid flow may form in the fault core during seismic faulting due to the formation of opening‐mode fractures within the cemented fault rocks.  相似文献   

2.
Pressure and hydrocarbon migration modelling was carried out in the Tune Field area, Viking Graben, offshore Norway. The pressures are considered to be controlled by compartments bounded by mapped faults. Two different interpreted fault maps at the top reservoir level (Brent Group) are used as input to the modelling. First, a low‐resolution fault map is used, with only the large faults interpreted, and next, both large and small faults are included. The simulations show high overpressures generated in the western area, in the deeper part of the Viking Graben, and hydrostatic in the eastern areas. A sharp transition zone results from using the low‐resolution fault map in the simulations. Small N–S striking faults situated in between the wells have to have higher sealing capacity than expected from juxtaposition analysis alone, to be able to match the overpressures measured in well 30/5‐2 and 30/8‐1S in the Tune Field, and well 30/8‐3 east of Tune. The intermediate pressure in the western part is probably related to flow in the deeper parts of the sedimentary column in the compartment, where well 30/8‐3 is situated. The secondary oil migration models show that overpressures have major effects on the migration pathways of hydrocarbons. The level of detail in the fault interpretation is important for simulation results, both for pressure distribution and for hydrocarbon migration.  相似文献   

3.
We analyse the fluid flow regime within sediments on the Eastern levee of the modern Mississippi Canyon using 3D seismic data and downhole logging data acquired at Sites U1322 and U1324 during the 2005 Integrated Ocean Drilling Program (IODP) Expedition 308 in the Gulf of Mexico. Sulphate and methane concentrations in pore water show that sulphate–methane transition zone, at 74 and 94 m below seafloor, are amongst the deepest ever found in a sedimentary basin. This is in part due to a basinward fluid flow in a buried turbiditic channel (Blue Unit, 1000 mbsf), which separates sedimentary compartments located below and above this unit, preventing normal upward methane flux to the seafloor. Overpressure in the lower compartment leads to episodic and focused fluid migration through deep conduits that bypass the upper compartment, forming mud volcanoes at the seabed. This may also favour seawater circulation and we interpret the deep sulphate–methane transition zones as a result of high downward sulphate fluxes coming from seawater that are about 5–10 times above those measured in other basins. The results show that geochemical reactions within shallow sediments are dominated by seawater downwelling in the Mars‐Ursa basin, compared to other basins in which the upward fluid flux is controlling methane‐related reactions. This has implications for the occurrence of gas hydrates in the subsurface and is evidence of the active connection between buried sediments and the water column.  相似文献   

4.
This article is concerned with chemical reactions that occur between two interacting parallel fluid flows using mixing in vertical faults as an example. Mineral precipitation associated with fluid flow in permeable fault zones results in mineralization and chemical reaction (alteration) patterns, which in turn are strongly dependent on interactions between solute advection (controlled by fluid flow rates), solute diffusion/dispersion and chemical kinetics. These interactions can be understood by simultaneously considering two dimensionless numbers, the Damköhler number and the Z‐number. The Damköhler number expresses the interaction between solute advection (flow rate) and chemical kinetics, while the Z‐number expresses the interaction between solute diffusion/dispersion and chemical kinetics. Based on the Damköhler and Z‐numbers, two chemical equilibrium length‐scales are defined, dominated by either solute advection or by solute diffusion/dispersion. For a permeable vertical fault zone and for a given solute diffusion/dispersion coefficient, there exist three possible types of chemical reaction patterns, depending on both the flow rate and the chemical reaction rate. These three types are: (i) those dominated by solute diffusion and dispersion resulting in precipitation at the lower tip of a vertical fault and as a thin sliver within the fault, (ii) those dominated by solute advection resulting in precipitation at or above the upper tip of the fault, and (iii) those in which advection and diffusion/dispersion play similar roles resulting in wide mineralization within the fault. Theoretical analysis indicates that there exists both an optimal flow rate and an optimal chemical reaction rate, such that chemical equilibrium following focusing and mixing of two fluids may be attained within the fault zone (i.e. type 3). However, for rapid and parallel flows, such as those resulting from a lithostatic pressure gradient, it is difficult for a chemical reaction to reach equilibrium within the fault zone, if the two fluids are not well mixed before entering the fault zone. Numerical examples are given to illustrate the three possible types of chemical reaction patterns.  相似文献   

5.
X. WANG  S. WU  S. YUAN  D. WANG  Y. MA  G. YAO  Y. GONG  G. ZHANG 《Geofluids》2010,10(3):351-368
Interpretation of high‐resolution two‐dimensional (2D) and three‐dimensional (3D) seismic data collected in the Qiongdongnan Basin, South China Sea reveals the presence of polygonal faults, pockmarks, gas chimneys and slope failure in strata of Pliocene and younger age. The gas chimneys are characterized by low‐amplitude reflections, acoustic turbidity and low P‐wave velocity indicating fluid expulsion pathways. Coherence time slices show that the polygonal faults are restricted to sediments with moderate‐amplitude, continuous reflections. Gas hydrates are identified in seismic data by the presence of bottom simulating reflectors (BSRs), which have high amplitude, reverse polarity and are subparallel to seafloor. Mud diapirism and mounded structures have variable geometry and a great diversity regarding the origin of the fluid and the parent beds. The gas chimneys, mud diapirism, polygonal faults and a seismic facies‐change facilitate the upward migration of thermogenic fluids from underlying sediments. Fluids can be temporarily trapped below the gas hydrate stability zone, but fluid advection may cause gas hydrate dissociation and affect the thickness of gas hydrate zone. The fluid accumulation leads to the generation of excess pore fluids that release along faults, forming pockmarks and mud volcanoes on the seafloor. These features are indicators of fluid flow in a tectonically‐quiescent sequence, Qiongdongnan Basin. Geofluids (2010) 10 , 351–368  相似文献   

6.
Fault intersections are the locus of hot spring activity and Carlin‐type gold mineralization within the Basin and Range, USA. Analytical and numerical solutions to Stokes equation suggest that peak fluid velocities at fault intersections increase between 20% and 47% when fracture apertures have identical widths but increase by only about 1% and 8% when aperture widths vary by a factor of 2. This suggests that fault zone intersections must have enlarged apertures. Three‐dimensional finite element models that consider intersecting 10‐ to 20‐m wide fault planes resulted in hot spring activity being preferentially located at fault zone intersections when fault zones were assigned identical permeabilities. We found that the onset of convection at the intersections of the fault zones occurred in our hydrothermal model over a narrow permeability range between 5 × 10?13 and 7 × 10?13 m2. Relatively high vertical fluid velocities (0.3–3 m year?1) extended away from the fault intersections for about 0.5–1.5 km. For the boundary conditions and fault plane dimensions used, peak discharge temperatures of 112°C at the water table occurred with an intermediate fault zone permeability of 5 × 10?13 m2. When fault plane permeability differed by a factor of 2 or more, the locus of hot spring activity shifted away from the intersections. However, increasing the permeability at the core of the fault plane intersection by 40% shifted the discharge back to the intersections. When aquifer units were assigned a permeability value equal to those of the fault planes, convective rolls developed that extend about 3 km laterally along the fault plane and into the adjacent aquifer.  相似文献   

7.
Many fault bound traps are underfilled despite the top seal capacity being secure. The hydrocarbon sealing performance of faults themselves can be compromised either by mechanical or capillary process. Capillary process can be important either due to juxtaposition or to fine‐grained clay or cataclastic material within the fault zone itself. There is debate about how important each of these mechanisms is over geological timescales of hydrocarbon trapping. Recent work has provided insights into fine‐tuning capillary‐related fault seal calibration methodologies. Over the last 15 years, vigorous scientific debate with multiple published laboratory experiments and modelling studies has led some researchers and industry technologists to theorise that for water‐wet conventional hydrocarbon reservoirs, the relative water permeability in the reservoir (towards the top of the hydrocarbon column) may become very small, but in practice never reach zero. While not advocating for either side in this debate, the importance of accounting for hydrodynamic conditions regardless of the capillary sealing mechanism is demonstrated. Additionally, it is noted that nonzero relative water permeability has implications on how a seal's capillary threshold pressure for the nonwetting hydrocarbon phase is estimated from field data. In the particular case where there are pressure differences between unproduced hydrocarbon reservoirs on either side of a fault, then the hydrocarbon saturation must be discontinuous across the fault. For hydrocarbon leakage to occur across the entire thickness of the fault zone, the hydrocarbon pressure must exceed the threshold pressure on the side of the fault zone with the highest formation water hydraulic head. This approach to estimating across‐fault pressure difference will result in an improved calibration data set used for predrill estimation of capillary fault seal capacity.  相似文献   

8.
Mineralised vein systems have been investigated at nine localities at the southern margin of the Anglo‐Brabant fold belt in Belgium. During the late Silurian to early Middle Devonian Caledonian orogeny, shear zones formed, inferred to be associated with granitoid basement blocks in the subsurface. The circulation of a metamorphic fluid, possibly originating in the Cambrian core of the fold belt, along these shear zones resulted in the formation of mesozonal orogenic mineralisation at the southern margin of the Anglo‐Brabant fold belt. The fluid had a composition dominated by H2O–CO2–X–NaCl–KCl. The shear zones form part of a greater fault zone, the Nieuwpoort–Asquempont fault zone, which is characterised by normal faulting that started before the Givetian and by the reactivation of the shear zones. Two fluid generations are associated with this normal faulting. First, a low salinity H2O–NaCl(–KCl) fluid migrated through the Palaeozoic rocks after the Silurian. Based on the isotopic composition, this fluid could be a late‐metamorphic Caledonian fluid or a younger fluid that originated from the Rhenohercynian basin and interacted with Lower Devonian rocks along its migration path. Second, a high salinity H2O–NaCl–CaCl2 fluid was identified in the fault systems. Similar fluids have been found in southern and eastern Belgium, where they produced Mississippi Valley‐type Zn–Pb deposits. These fluids are interpreted as evaporative brines that infiltrated the Lower Palaeozoic basement, from where they were expelled during extensional tectonism in the Mesozoic.  相似文献   

9.
Numerical simulations of multiphase CO2 behavior within faulted sandstone reservoirs examine the impact of fractures and faults on CO2 migration in potential subsurface injection systems. In southeastern Utah, some natural CO2 reservoirs are breached and CO2‐charged water flows to the surface along permeable damage zones adjacent to faults; in other sites, faulted sandstones form barriers to flow and large CO2‐filled reservoirs result. These end‐members serve as the guides for our modeling, both at sites where nature offers ‘successful’ storage and at sites where leakage has occurred. We consider two end‐member fault types: low‐permeability faults dominated by deformation‐band networks and high‐permeability faults dominated by fracture networks in damage zones adjacent to clay‐rich gouge. Equivalent permeability (k) values for the fault zones can range from <10?14 m2 for deformation‐band‐dominated faults to >10?12 m2 for fracture‐dominated faults regardless of the permeability of unfaulted sandstone. Water–CO2 fluid‐flow simulations model the injection of CO2 into high‐k sandstone (5 × 10?13 m2) with low‐k (5 × 10?17 m2) or high‐k (5 × 10?12 m2) fault zones that correspond to deformation‐band‐ or fracture‐dominated faults, respectively. After 500 days, CO2 rises to produce an inverted cone of free and dissolved CO2 that spreads laterally away from the injection well. Free CO2 fills no more than 41% of the pore space behind the advancing CO2 front, where dissolved CO2 is at or near geochemical saturation. The low‐k fault zone exerts the greatest impact on the shape of the advancing CO2 front and restricts the bulk of the dissolved and free CO2 to the region upstream of the fault barrier. In the high‐k aquifer, the high‐k fault zone exerts a small influence on the shape of the advancing CO2 front. We also model stacked reservoir seal pairs, and the fracture‐dominated fault acts as a vertical bypass, allowing upward movement of CO2 into overlying strata. High‐permeability fault zones are important pathways for CO2 to bypass unfaulted sandstone, which leads to reduce sequestration efficiency. Aquifer compartmentalization by low‐permeability fault barriers leads to improved storativity because the barriers restrict lateral CO2 migration and maximize the volume and pressure of CO2 that might be emplaced in each fault‐bound compartment. As much as a 3.5‐MPa pressure increase may develop in the injected reservoir in this model domain, which under certain conditions may lead to pressures close to the fracture pressure of the top seal.  相似文献   

10.
The currently active fluid regime within the outboard region of the Southern Alps, New Zealand was investigated using a combination of field observations, carbon‐ and oxygen‐stable isotopes from fault‐hosted calcites and interpretation of magnetotelluric (MT) data. Active faulting in the region is dominated by NE striking and N striking, oppositely dipping thrust fault pairs. Stable isotopic analyses of calcites hosted within these fault zones range from 10 to 25‰δ18O and from ?33 to 0‰δ13C. These values reflect mixing of three parent fluids: meteoric water, carbon‐exchanged groundwater and minor deeper rock‐exchanged fluids, at temperatures of 10–90°C in the upper 3–4 km of the crust. A broad, ‘U‐shaped’ zone of high electrical conductivity (maximum depth c. 28 km) underlies the central Southern Alps. In the ductile region of the crust, the high‐conductivity zone is subhorizontal. Near‐vertical zones of high conductivity extend upward to the surface on both sides of the conductive zone. On the outboard side of the orogen, the conductive zone reaches the surface coincident with the trace of the active Forest Creek Faults. Near‐surface flow is shown to dominate the outboard region. Topographically driven meteoric water interacts, on a kilometre scale, with either carbon‐exchanged groundwater or directly with organic material within Pliocene gravels, resulting in a distinctive low 13C signal within fault‐hosted calcites of the outboard region. The high‐strain zone in the lower crust focuses the migration of deeply sourced fluids upward to the base of the brittle–ductile transition. Interconnected fluid is imaged as a narrow vertical zone of high conductivity in the upper crust, implying continuous permeability and possibly buoyancy‐driven flow of deeply sourced fluids to higher levels of the crust where they are detected by the isotopic analysis of the fault‐hosted calcites.  相似文献   

11.
M. A. Simms  G. Garven 《Geofluids》2004,4(2):109-130
Thermal convection has the potential to be a significant and widespread mechanism of fluid flow, mass transport, and heat transport in rift and other extensional basins. Based on numerical simulation results, large‐scale convection can occur on the scale of the basin thickness, depending on the Rayleigh number for the basin. Our analysis indicates that for syn‐rift and early post‐rift settings with a basin thickness of 5 km, thermal convection can occur for basal heat flows ranging from 80 to 150 mW m?2, when the vertical hydraulic conductivity is on the order of 1.5 m year?1 and lower. The convection cells have characteristic wavelengths and flow patterns depending on the thermal and hydraulic boundary conditions. Steeply dipping extensional faults can provide pathways for vertical fluid flow across large thicknesses of basin sediments and can modify the dynamics of thermal convection. The presence of faults perturbs the thermal convective flow pattern and can constrain the size and locations of convection cells. Depending on the spacing of the faults and the hydraulic properties of the faults and basin sediments, the convection cells can be spatially organized to align with adjacent faults. A fault‐bounded cell occurs when one convection cell is constrained to occupy a fault block so that the up‐flow zone converges into one fault zone and the down‐flow zone is centred on the adjacent fault. A fault‐bounded cell pair occurs when two convection cells occupy a fault block with the up‐flow zone located between the faults and the down‐flow zones centred on the adjacent faults or with the reverse pattern of flow. Fault‐bounded cells and cell pairs can be referred to collectively as fault‐bounded convective flow. The flow paths in fault‐bounded convective flow can be lengthened significantly with respect to those of convection cells unperturbed by the presence of faults. The cell pattern and sense of circulation depend on the fault spacing, sediment and fault permeabilities, lithologic heterogeneity, and the basal heat flow. The presence of fault zones also extends the range of conditions for which thermal convection can occur to basin settings with Rayleigh numbers below the critical value for large‐scale convection to occur in a basin without faults. The widespread potential for the occurrence of thermal convection suggests that it may play a role in controlling geological processes in rift basins including the acquisition and deposition of metals by basin fluids, the distribution of diagenetic processes, the temperature field and heat flow, petroleum generation and migration, and the geochemical evolution of basin fluids. Fault‐bounded cells and cell pairs can focus mass and heat transport from longer flow paths into fault zones, and their discharge zones are a particularly favourable setting for the formation of sediment‐hosted ore deposits near the sea floor.  相似文献   

12.
H. A. SHELDON  A. ORD 《Geofluids》2005,5(4):272-288
Mineralization of brittle fault zones is associated with sudden dilation, and the corresponding changes in porosity, permeability and fluid pressure, that occur during fault slip events. The resulting fluid pressure gradients cause fluid to flow into and along the fault until it is sealed. The volume of fluid that can pass through the deforming region depends on the degree of dilation, the porosity and permeability of the fault and wall rocks, and the rate of fault sealing. A numerical model representing a steep fault cutting through a horizontal seal is used to investigate patterns of fluid flow following a dilatant fault slip event. The model is initialized with porosity, permeability and fluid pressure representing the static mechanical state of the system immediately after such an event. Fault sealing is represented by a specified evolution of porosity, coupled to changes in permeability and fluid pressure, with the rate of porosity reduction being constrained by independent estimates of the rate of fault sealing by pressure solution. The general pattern of fluid flow predicted by the model is of initial flow into the fault from all directions, followed by upward flow driven by overpressure beneath the seal. The integrated fluid flux through the fault after a single failure event is insufficient to account for observed mineralization in faults; mineralization would require multiple fault slip events. Downward flow is predicted if the wall rocks below the seal are less permeable than those above. This phenomenon could at least partially explain the occurrence of uranium deposits in reactivated basement faults that cross an unconformity between relatively impermeable basement and overlying sedimentary rocks.  相似文献   

13.
The Miocene siliciclastic sediments infilling the Vallès‐Penedès half‐graben are affected by two sets of structures developed during the extensional tectonics that created the basin. The first set, represented by extension fractures infilled with mud and sands, is attributed to seismically induced liquefaction. The second set, represented by normal faults, corresponds to a high‐permeability horsetail extensional fracture mesh developed near the surface in the hanging walls of normal faults. The incremental character of the vein‐fills indicates episodic changes in the tectonic stress state and fault zone permeability. Two episodes of fluid migration are recorded. The first episode occurred prior to consolidation and lithification when shallow burial conditions allowed oxidizing meteoric waters to flow horizontally through the more porous and permeable sandy layers. Development of clastic dikes allowed local upward flow and dewatering of the sandy beds. Liquefaction and expulsion of fluids were probably driven by seismic shaking. During the first episode of fluid migration there was no cementation of the sandstone or within the fractures, probably because little fluid was mobilized by the predominantly compaction‐driven flow regime. The second episode of fluid migration occurred synchronously with normal fault development, during which time the faults acted as fluid conduits. Fluids enriched in manganese, probably leached from local manganese oxyhydroxides soon after sedimentation, moved laterally and produced cementation in the sandstone layers, eventually arriving at the more porous and permeable fault pathways that connected compartments of different porosities and permeabilities. Carbonate probably precipitated in fractures saturated with meteoric water near the ground surface at a transitional redox potential. Once the faults became occluded by calcite cement, shortly after fault development, they became barriers to both vertical and horizontal fluid flow.  相似文献   

14.
P. A. CUTILLO  S. GE 《Geofluids》2006,6(4):319-333
The pool in Devils Hole is a sensitive indicator of crustal strain and fluctuates in response to changes in atmospheric pressure, earth tides, earthquakes, large‐scale tectonic activity and ground‐water development. Short‐term and cyclic water‐level fluctuations caused by atmospheric pressure and earth tides were found to be on the order of millimeters to centimeters. The 1992 Landers/Little Skull Mountain earthquake sequence and the 1999 Hector Mine earthquake induced water‐level offsets of greater than ?12 and ?3.6 cm, respectively. The results of a dislocation model used to compute volumetric strain for each earthquake indicates that the coseismic water‐level offsets are consistent in magnitude and sense with poroelastic responses to earthquake‐induced strain. Theoretical postseismic fluid‐flow modeling indicates that the diffusivity of the system is on the order of 0.03 m2 sec?1, and identified areas of anomalous water‐level fluctuations. Interpretation of model results suggests that while the persistent post‐Landers rise in water‐level can be attributed to deformation‐induced channeling of fluid to the Devils Hole fault zone, the cause of the pre‐Hector Mine water‐level rise may be related to postseismic excess fluid pressures or preseismic strain accumulation.  相似文献   

15.
B. Jung  G. Garven  J. R. Boles 《Geofluids》2014,14(2):234-250
Fault permeability may vary through time due to tectonic deformations, transients in pore pressure and effective stress, and mineralization associated with water‐rock reactions. Time‐varying permeability will affect subsurface fluid migration rates and patterns of petroleum accumulation in densely faulted sedimentary basins such as those associated with the borderland basins of Southern California. This study explores the petroleum fluid dynamics of this migration. As a multiphase flow and petroleum migration case study on the role of faults, computational models for both episodic and continuous hydrocarbon migration are constructed to investigate large‐scale fluid flow and petroleum accumulation along a northern section of the Newport‐Inglewood fault zone in the Los Angeles basin, Southern California. The numerical code solves the governing equations for oil, water, and heat transport in heterogeneous and anisotropic geologic cross sections but neglects flow in the third dimension for practical applications. Our numerical results suggest that fault permeability and fluid pressure fluctuations are crucial factors for distributing hydrocarbon accumulations associated with fault zones, and they also play important roles in controlling the geologic timing for reservoir filling. Episodic flow appears to enhance hydrocarbon accumulation more strongly by enabling stepwise build‐up in oil saturation in adjacent sedimentary formations due to temporally high pore pressure and high permeability caused by periodic fault rupture. Under assumptions that fault permeability fluctuate within the range of 1–1000 millidarcys (10?15–10?12 m2) and fault pressures fluctuate within 10–80% of overpressure ratio, the estimated oil volume in the Inglewood oil field (approximately 450 million barrels oil equivalent) can be accumulated in about 24 000 years, assuming a seismically induced fluid flow event occurs every 2000 years. This episodic petroleum migration model could be more geologically important than a continuous‐flow model, when considering the observed patterns of hydrocarbons and seismically active tectonic setting of the Los Angeles basin.  相似文献   

16.
Many faults in active and exhumed hydrocarbon‐generating basins are characterized by thick deposits of carbonate fault cement of limited vertical and horizontal extent. Based on fluid inclusion and stable isotope characteristics, these deposits have been attributed to upward flow of formation water and hydrocarbons. The present study sought to test this hypothesis by using numerical reactive transport modeling to investigate the origin of calcite cements in the Refugio‐Carneros fault located on the northern flank of the Santa Barbara Basin of southern California. Previous research has shown this calcite to have low δ13C values of about ?40 to ?30‰PDB, suggesting that methane‐rich fluids ascended the fault and contributed carbon for the mineralization. Fluid inclusion homogenization temperatures of 80–125°C in the calcite indicate that the fluids also transported significant quantities of heat. Fluid inclusion salinities ranging from fresh water to seawater values and the proximity of the Refugio‐Carneros fault to a zone of groundwater recharge in the Santa Ynez Mountains suggest that calcite precipitation in the fault may have been induced by the oxidation of methane‐rich basinal fluids by infiltrating meteoric fluids descending steeply dipping sedimentary layers on the northern basin flank. This oxidation could have occurred via at least two different mixing scenarios. In the first, overpressures in the central part of the basin may have driven methane‐rich formation waters derived from the Monterey Formation northward toward the basin flanks where they mixed with meteoric water descending from the Santa Ynez Mountains and diverted upward through the Refugio‐Carneros fault. In the second scenario, methane‐rich fluids sourced from deeper Paleogene sediments would have been driven upward by overpressures generated in the fault zones because of deformation, pressure solution, and flow, and released during fault rupture, ultimately mixing with meteoric water at shallow depth. The models in the present study were designed to test this second scenario, and show that in order for the observed fluid inclusion temperatures to be reached within 200 m of the surface, moderate overpressures and high permeabilities were required in the fault zone. Sudden release of overpressure may have been triggered by earthquakes and led to transient pulses of accelerated fluid flow and heat transport along faults, most likely on the order of tens to hundreds of years in duration. While the models also showed that methane‐rich fluids ascending the Refugio‐Carneros fault could be oxidized by meteoric water traversing the Vaqueros Sandstone to form calcite, they raised doubts about whether the length of time and the number of fault pulses needed for mineralization by the fault overpressuring mechanism were too high given existing geologic constraints.  相似文献   

17.
A long‐term pump test was conducted in the KTB pilot borehole (KTB‐VB), located in the Oberpfalz area, Germany. It produced 22 300 m3 of formation fluid. Initially, fluid production rate was 29 l min?1 for 4 months, but was then raised to an average of 57 l min?1 for eight more months. The aim of this study was to examine the fluid parameters and hydraulic properties of fractured, crystalline crusts as part of the new KTB programme ‘Energy and Fluid Transport in Continental Fault Systems’. KTB‐VB has an open‐hole section from 3850 to 4000 m depth that is in hydraulic contact with a prominent continental fault system in the area, called SE2. Salinity and temperature of the fluid inside the borehole, and consequently hydrostatic pressure, changed significantly throughout the test. Influence of these quantities on variations in fluid density had to be taken into account for interpretation of the pump test. Modelling of the pressure response related to the pumping was achieved assuming the validity of linear Darcy flow and permeability to be independent of the flow rate. Following the principle ‘minimum in model dimension’, we first examined whether the pressure response can be explained by an equivalent model where rock properties around the borehole are axially symmetric. Calculations show that the observed pressure data in KTB‐VB can in fact be reproduced through such a configuration. For the period of high pumping rate (57 l min?1) and the following recovery phase, the resulting parameters are 2.4 × 10?13 m3 in hydraulic transmissivity and 3.7 × 10?9 m Pa?1 in storativity for radial distances up to 187 m, and 4.7 × 10?14 m3 and 6.0 × 10?9 m Pa?1, respectively, for radial distances between 187 and 1200 m. The former pair of values mainly reflect the hydraulic properties of the fault zone SE2. For a more realistic hydraulic study on a greater scale, program FEFLOW was used. Parameter values were obtained by matching the calculated induced pressure signal to fluid‐level variations observed in the KTB main hole (KTB‐HB) located at 200 m radial distance from KTB‐VB. KTB‐HB is uncased from 9031 to 9100 m and shows indications of leakage in the casing at depths 5200–5600 m. Analysis of the pressure record and hydraulic modelling suggest the existence of a weak hydraulic communication between the two boreholes, probably at depths around the leakage. Hydraulic modelling of a major slug‐test in KTB‐HB that was run during the pumping in KTB‐VB reveals the effective transmissivity of the connected formation to be 1 to 2 orders of magnitude lower than the one determined for the SE2 fault zone.  相似文献   

18.
Stratiform sediment‐hosted Zn–Pb–Ag mineral deposits constitute about 40% of the Earth's zinc resources ( Allen 2001 ), and in most cases their genesis involves the discharge of basinal brines near or on the seafloor through syndepositional faults ( Sangster 2002 ). From the point of view of base metal exploration, it is therefore essential to identify all possible faults that formerly carried the upwelling ore‐forming solutions during mineralising events. This paper presents a numerical investigation of the relative importance of various physical parameters in controlling fluid discharge, recharge and heat transport in faults. A two‐dimensional, free convection of pure water, hydrogeological model is developed for the McArthur basin in northern Australia based on the surface geology, known stratigraphic and structural relationships and regional geophysical interpretations. Numerical experiments and sensitivity analyses reveal that faults with strong initial heat input, due to depth of penetration or magmatic activity, are the most likely candidates to carry discharge fluids to the sites of metal precipitation. Deeper, wider and more permeable faults are more likely to behave as the fluid discharge pathways, whereas shallow, narrow or less permeable faults act as marine water recharge pathways. Compared with these fault‐related factors, aquifer physical properties are less important in determining fluid flow patterns and the geothermal regime. These results are an important step in understanding hydrothermal fluid flow in sedimentary basins in order to develop effective exploration criteria for the location of stratiform Zn–Pb–Ag deposits.  相似文献   

19.
F. H. Weinlich 《Geofluids》2014,14(2):143-159
The ascent of magmatic carbon dioxide in the western Eger (Oh?e) Rift is interlinked with the fault systems of the Variscian basement. In the Cheb Basin, the minimum CO2 flux is about 160 m3 h?1, with a diminishing trend towards the north and ceasing in the main epicentral area of the Northwest Bohemian swarm earthquakes. The ascending CO2 forms Ca‐Mg‐HCO3 type waters by leaching of cations from the fault planes and creates clay minerals, such as kaolinite, as alteration products on affected fault planes. These mineral reactions result in fault weakness and in hydraulically interconnected fault network. This leads to a decrease in the friction coefficient of the Coulomb failure stress (CFS) and to fault creep as stress build‐up cannot occur in the weak segments. At the transition zone in the north of the Cheb Basin, between areas of weak, fluid conductive faults and areas of locked faults with frictional strength, fluid pressure can increase resulting in stress build‐up. This can trigger strike‐slip swarm earthquakes. Fault creep or movements in weak segments may support a stress build‐up in the transition area by transmitting fluid pressure pulses. Additionally to fluid‐driven triggering models, it is important to consider that fluids ascending along faults are CO2‐supersaturated thus intensifying the effect of fluid flow. The enforced flow of CO2‐supersaturated fluids in the transitional zone from high to low permeability segments through narrowings triggers gas exsolution and may generate pressure fluctuations. Phase separation starts according to the phase behaviour of CO2‐H2O systems in the seismically active depths of NW Bohemia and may explain the vertical distribution of the seismicity. Changes in the size of the fluid transport channels in the fault systems caused, or superimposed, by fault movements, can produce fluid pressure increases or pulses, which are the precondition for triggering fluid‐induced swarm earthquakes.  相似文献   

20.
P. Alt-Epping  L. Smith 《Geofluids》2001,1(3):163-181
A method of calculating chemical water/rock ratios is presented that enables the estimation of fluid velocities in open, flow‐through hydrologic systems. The approach is based on relating the gain/loss of a chemical species per kilogram of solid phase to the loss/gain of that species in the fluid phase, integrated across a specified length of the flowpath. After examining the underlying approximations of the approach using a one‐dimensional model of seawater moving through a basalt under nonisothermal conditions, the method is applied to representative zones within a two‐dimensional hydrothermal convective system. The method requires that regions within the flow system can be identified in which the direction of flow is steady for an extended period of time. Estimates of fluid velocity are spatial and temporal averages for the length of the flowpath used in the calculation. The location within the flow system and the nature of the alteration reactions determine which species can provide reliable values of the chemical water/rock ratio and useful estimates of fluid velocities. Over the length of the flowpath considered, the calculation of water/rock ratios works best when a species is controlled by a single reaction. Accurate estimates are favoured if the concentration profile of a species along the flowpath increases or decreases monotonically. If the length of the flowpath extends over more than one reaction zone, then erroneous estimates of the water/rock ratio and fluid velocity are more likely. Model calculations suggest that the quartz/silica system should provide reliable estimates for fluid velocity under a wide range of temperature and flow conditions, in particular in those regions of a system at or near quartz equilibrium, so that the aqueous silica concentration is buffered by quartz and correlated with the temperature distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号