首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An imaging Doppler interferometer (IDI) radar was operated during the three AIDA '89 campaigns in Puerto Rico over the period March–May of 1989. The output of the IDI analysis characterizes radar scattering in terms of a number of discrete ‘scattering points,’ also referred to as ‘multiple scattering centers,’ IDI/MSC for short. For each of these points the three-dimensional location, radial velocity and amplitude and phase are determined, similar to the output of meteor radars. We have applied the conventional Groves [(1959) J. atmos. terr. Phys. 16, 344–356] meteor wind radar analysis to the scattering points to produce the mean apparent motions over the height range from 70 to 110 km which are presented here. The mean apparent motion of the scattering centers is the quantity that would correspond to the neutral atmosphere wind or bulk motion if the scattering points are physical entities (such as turbulent eddies) whose motions are determined solely by advection. This is the quantity which is treated as the ‘wind’ in the analysis which follows and which should be compared to the wind measurements as deduced from the other methods employed during this campaign. There is, however, a caveat which supports the contention of Hineset al. [(1993) J. atmos. terr. Phys. 55, 241–287] that extreme care must be used in interpreting the velocities measured by partial reflection radars as winds. The current application of the Groves method of analysis has revealed motions from which one would infer a typical equatorial easterly circulation, with mean meridional circulation becoming significant only above 96 km. A periodogram analysis of the complete data interval (5–11 April) has shown the diurnal tide to be the most significant feature of the wind field at these altitudes, with zonal amplitudes up to some 50 m/s and meridional amplitudes approximately half this value. The 12 and 6 h tides become as significant as the diurnal above 100 km. The two day (48 ± 5 h) wave is the next most significant feature, with zonal amplitude increasing with height up to 30 m/s at 110km. The semidiurnal tide is not at all well developed below 100 km. However, analysis on a day by day basis reveals a significant semidiurnal component which is not phase coherent over the total interval. Mean vertical velocities are of the order of tens of centimeters per second and are considered to be more realistic than the meters per second velocities usually inferred from analyses of meteor trail drifts.  相似文献   

2.
The Arecibo Initiative in Dynamics of the Atmosphere (AIDA) '89 was a multi-instrument campaign designed to compare various mesospheric wind measurement techniques. Our emphasis here is the comparison of the incoherent scatter radar (ISR) measurements with those of a 3.175 MHz radar operating a s an imaging Doppler interferometer (1131). We have performed further analyses in order to justify the interpretation of the long term IDI measurements in terms of prevailing winds and tides. Initial comparison of 14 profiles by Hines et al., 1993, J. atmos. terr. Phys. 55, 241–288, showed good agreement between the ISR and IDI measurements up to about 80 km, with fair to poor agreement above that altitude. We have compiled statistics from 208 profiles which show that the prevailing wind and diurnal and semidiurnal tides deduced from the IDI data provide a background wind about which both the IDI and ISR winds are normally distributed over the height range from 70 to 97 km. The 3.175 MHz radar data have also been processed using an interferometry (INT) technique [Van Baelen and Richmond 1991, Radio Sts. 26, 1209–1218] and two spaced antenna (SA) techniques [Meek, 1980, J. atmos. terr. Phys. 42, 837–839; Briggs. 1984, MAP Handbook, Vol. 13, pp. 166–186] to determine the three dimensional wind vector. These are then compared with the IDI results. Tidal amplitudes and phases were calculated using the generalized analysis of Groves, 1959, S. atmos. terr. Phys. 16, 344–356, historically used on meteor wind radar data. Results show a predominance of the diurnal S11 tidal mode in the altitude range 70–110 km, reaching a maximum amplitude 45 ms−1 at 95 km, with semidiurnal amplitudes being about 10–15 ms−1 throughout the height range considered. There is evidence of the two day wave in data from 86–120 km, with amplitudes on the order of 20 ms−1.  相似文献   

3.
Signal statistics of VHF radar returns from vertical pointing observations of the clear air are investigated. In particular, the signal signature, its Doppler spectrum and statistical distribution are examined. It is found that the most important factors that characterize the statistics of the signals are the width of the spectrum and the Nakagamim-coefficient for the intensity distribution. Using these factors as criteria, two types of signals are found. One corresponds to volume scattering arising from turbulence or multiple thin laminae or sheets. The other corresponds to return from a single sheet. Examples of the different scattering/reflection processes will be shown. Numerical modeling is used to simulate the scattering/reflection processes. From the simulation, it is demonstrated that echo signals from some range gates are consistent with the picture of reflection from a single, diffuse sheet, causing focusing and defocusing of the signals.  相似文献   

4.
A sodium LIDAR instrument located at Andenes, Norway (69°N; 16°E) observed several sudden developments of narrow sodium layers in the 90–100 km altitude region. These layers grow with typical time constants of 5 min and have a width of 1 km in altitude. We present the temporal and spatial properties for a number of these events. In a first step towards identifying the processes which create these layers we study the correlation of the growth phase of sudden sodium layers and of sporadic E layers. The latter have been recorded by an ionosonde located 129 km east of the LIDAR site. Within the mutual altitude and time resolution available in our common records a strong correlation of simultaneous occurrence of sudden sodium layers and Esl layers is observed, which establishes a strong link between the formation of the two types of layers. We further discuss processes which potentially could give rise to the formation of sudden sodium layers.  相似文献   

5.
High resolution pitch angle measurements of outer zone electrons in the energy range 12 keV−1.6 MeV were obtained at high altitude in the region of the high power VLF transmitter UMS [300 kW radiated at 17.1 kHz (Watt A. D., 1967, VLF Radio Engineering, Pergamon Press, Oxford)] while a resonant wave-particle interaction was in progress. Additional complementary electron measurements in the range of 36–316 keV were obtained in the drift loss cone by another satellite at low altitude along the drift path 75° east of the interaction region. The data from the low-altitude satellite confirm that UMS was precipitating particles in the inner zone, in the slot, and in the outer zone at the time that the high-altitude satellite was obtaining its data. The high-altitude pitch angle distributions indicate that, for this event, two types of scattering interactions were in progress. Particles with small pitch angles, up to 17.2° at the Equator, were being removed, resulting in an enhanced loss cone. Particles which were mirroring between 6500 km and the altitude of the spacecraft (7200) km were also being strongly scattered, resulting in a relative minimum in the pitch angle distribution around 90°. The data are interpreted as indicating that a cyclotron mode interaction with UMS waves was precipitating electrons with equatorial pitch angles up to 17.2° and that another process, perhaps electrostatic (ES) waves arising from the UMS radiations through a mode-conversion process, was present in the region above 6500 km and was efficiently scattering those particles which mirrored in that region  相似文献   

6.
Night-time mesospheric temperatures were simultaneously determined from the Doppler broadening of the D2 resonance line of atmospheric sodium excited by a laser and from the rotational distribution of the P1(1), P1(3) and P1(4) lines of the OH(3,1) band by an i.r. spectrometer. Both instruments were located at the Andøya Rocket Range (69°N, 16°E). The mesospheric temperature gradient permits determination of the altitude of the OH1 emitting layer from a comparison of the equivalent layer temperatures calculated from the height-resolved Na Doppler temperatures with the observed OH1 rotational temperatures. The altitude of the OH1 layer maximum is determined with an accuracy of ±4 km. For 3 nights in January 1986 the OH1 emission layer is found near an altitude of 86 km.  相似文献   

7.
Until now the presence of F-region irregularities responsible for spread-F (sp-F) traces in ionograms has been considered as a purely night-time phenomenon extending sporadically to the early morning hours. We herein report that, on two occasions (26 March 1974 and 1 February 1984) similar irregularities were observed between 1400 and 1600 hours local time with the Jicamarca radar. These irregularities caused enhancements in the power of the radar echo of as much as two orders of magnitude, were found over a region of a few hundred kilometers on the topside of the F-region extending from around 600 to 1000 km altitude, and persisted for 1–2 h. The irregularities were aspect sensitive (aligned with the magnetic field) and produced echoes with a fading rate of the order of one to a few seconds. The background zonal electric field, inferred from the vertical drift velocity, was fairly constant in altitude, with values smaller than 0.1 mV m−1. During the duration of the events, zonal components of both signs occurred, with the component passing through zero several times. We have no information on the vertical component of E. These irregularities could not be observed with ground-based ionosondes, since they are on the topside of the F-region. They may be related to fossil bubbles that are responsible for HF ducting observed by satellites.  相似文献   

8.
The vertical structure of AGW (atmospheric gravity wave) associated fluctuations of ionospheric plasma parameters for the 100–240 km altitude range in the daytime of 7 September 1988 has been investigated by making use of the data provided by the Tromsø measurements in the EISCAT CP1 observation mode.The wave power profile vs height has been studied by integrating the power spectral density in each altitude. The essential feature of the power variation can be explained in terms of the energy conservation of AGWs propagating in a dissipative thermosphere. Intrinsic propagation parameters of the dominant AGW have been successfully estimated with a method based on the retrieval of the Doppler effect due to the horizontal prevailing wind. From the fluctuation structure analysis in a time-altitude frame, a downcoming AGW has been clearly identified. This downcoming wave might have been reflected from a wind shear at the altitude around 200 km, which is inferred from the meridional prevailing wind profile.  相似文献   

9.
Observations of the lower ionospheric disturbance caused by a low altitude nuclear explosion are presented. A forward scatter radar, frequency 41 MHz, power 2.5 kW, was used to study these disturbances. The first radar scattering signal consisting of three peaks appeared 40 s after the explosion. It was due to early ionization by delayed y-rays. The second kind of disturbance generated after 190 s was clearly different from the first. The scattering signal had a constant component which indicated a strong specular reflection. The field strength increased by more than 20 db. This disturbance was produced by the direct shock wave. The third kind of disturbance began after 8 min, lasted 5.0 min, and was probably dominated by the fireball/smoke cloud oscillation when it reached its stabilization altitude and approached hydrodynamical equilibrium with the ambient atmosphere. Using numerical computation techniques, we have explained the above results well.  相似文献   

10.
In order to study the influence of altitude smearing on the determination of ionospheric parameters by incoherent scatter, we take advantage of the fact that EISCAT single pulse measurements in the F1-region have been made simultaneously with two different altitude resolutions. It is shown that the measured parameters can be very far from the real parameters, due to this altitude smearing. An attempt to deconvolve the profiles is made, which works well in the case of smooth power variations within the diffusive volume, but diverges in the case of strong structured power variations, such as those produced by energetic auroral particle precipitation into the upper atmosphere. In this last case it was, however, possible to deduce the real profile with quite good accuracy by a trial and error method. The geophysical consequences of the large discrepancy between measured and actual parameters (density and temperatures) are finally discussed.  相似文献   

11.
12.
We have observed Traveling Ionospheric Disturbances (TIDs) in the night-time D- and E-regions using a 2.66 MHz imaging Doppler interferometer radar. TIDs were observed in two distinct ways. In the first, the TID was manifested as discrete traveling surges, with average spacings of 54 min. The D-region surges were so well defined that they could be tracked as they passed close to overhead by using the phase differences across the antenna arrays. A velocity of 135 m s−1 to the south was measured, giving a horizontal wavelength of 440 km typical of medium scale TIDs. The direction of phase travel relative to the horizontal was −6° (i.e. downwards). These observations were made during a night of extraordinary OH infrared mesopause structure activity made visible by the presence of a total lunar eclipse. In the second type of TID observation, we show the Doppler interferometer analysis of ripples on the under surface of sporadic-E layers taken on two nights of significant OH infrared and OI 5577 Å wave activity. The TIDs were observed to propagate at speeds of 120–300 m s−1, with directions predominately toward the southwest, again typical of medium scale TIDs. These results show definite wave effects on MF radar returns and thus suggest that the measurement of mesospheric bulk winds with MF radars should be approached with some caution. Comparison of the TID characteristics with the OH structure characteristics show that the TIDs travel faster than the OH structures, have longer apparent horizontal wavelengths and generally travel in the opposite direction.  相似文献   

13.
We discuss in this paper sudden sodium layers (SSLs), which we observe with a sodium lidar instrument at Andenes, Norway (69°N). We speak of a SSL if, in a narrow altitude range (typically less than 2km), the Na density increases over the normal Na density by a factor of at least 2 within 5 min. Between December 1985 and November 1987, we have observed 42 such layers in 378 h of lidar measurements. This number increases to 75 if we only require an increase of a factor of 1.5 within 8 min. At our observation site, SSLs have the following properties: (a) they develop between 90 and 110 km altitude, (b) they develop between 20 and 02 LT, (c) their appearance shows a strong, positive correlation with that of ƒ-type Es layers, and (d) their appearance does not show a strong correlation with either riometer absorption or meteor showers. We discuss a number of potential processes for SSL formation. SSLs above 100km can be formed in ƒ-type Es layers by the conversion of Na+ ions into neutral Na. The development of SSLs below 95 km requires the presence of an additional reservoir of Na, such as Na-bearing molecules, ions, and/or ‘smoke’ particles. We also evaluate the proposal that SSLs are the outcome of single meteoroids entering the upper atmosphere, a proposition for which we find little observational support.  相似文献   

14.
This paper reviews the theory of the F-region dynamo which drives about 10–15% of the total mid-latitude ionospheric current by day, and the major part at night (Section 2). Polarization fields associated with the dynamo cause marked effects in the night-time F-region, notably the mean eastward wind (Section 3). The paper also discusses the equipotentiality of geomagnetic field lines (Section 4 and Appendix) and the question of location of Sq and L current systems (Section 5).  相似文献   

15.
The main object of the campaign reported here was to compare TID characteristics obtained from two essentially different observation techniques: (1) observation of the apparent angular position shifts of Virgo A by the Nançay radioheliograph (47.33°N, 2.15°E) gave azimuths and periods of travelling ionospheric disturbances (TIDs); (2) differential Doppler shifts of signals from NNSS-satellites recorded simultaneously at Tours (47.35°N, 0.70°E), Nançay and Besançon (47.32°N, 5.99°E) provided azimuths and latitudinal wavelengths. Observations were made during the period 10–30 November 1987, between 6 and 12 h UT. It is found that azimuths obtained from the two techniques are consistent if sufficient averaging over wave trains is performed: averaging over several hours for radio interferometry and averaging over the whole satellite trace for the differential Doppler technique. Averaging is necessary because of (1) the intrinsic dispersion in wave azimuth, (2) the broadness of observed wave spectra and the dispersive properties of gravity waves, and (3) the spatial separation of ionospheric points for the two techniques. Good agreement between the azimuths was achieved by setting the altitude of the TIDs, which is used in the differential Doppler analysis, to about 250 km, appreciably lower than the maximum in electron density (about 350 km). The mean azimuth of observed TIDs was 12° East from South with a standard deviation of about 30°. The dominant period and horizontal wavelength of the observed TIDs were 40 min and 450 km. The East-West coherence length of the TIDs was found to be only of the order of 200 km.  相似文献   

16.
In this paper, results and analyses of solar eclipse effects on the lower ionosphere are presented. After the first contact of the total eclipse on 16 February 1980, an absorption increment of 12 dB was observed. At the same time, the frequency of amplitude fading increased largely and Doppler frequency shift disturbances appeared. The calculation of signal strength is carried out by means of Booker's scattering theory, supposing an outer scale To = 1000 m and an inner scale Ti = 5 m, of space scale spectrum of field-aligned irregularities in the equatorial E-region. The calculated results agree fairly well with observations. Results showed that, because of the formation of lower ionospheric field-aligned irregularities in the course of the obscuration of solar local ionization source, radio wave scattering was strengthened.  相似文献   

17.
The purpose of the paper is to describe a high frequency goniopolarimeter operating in the range of 3–30 MHz. The system uses four sensors, each of them is composed of two cross polarization active loop antennas oriented east-west and north-south. By “goniopolarimeter” we mean a system which determines both arrival angles (goniometer function), the type of the mode (O or X), the magnitude of this mode and the corresponding Doppler shift. It works with known broadcast transmitters and permits measurements over a large geographic area. The signal process deals with narrowband signals, polarization filtering, nonlinear frequency analysis and interferometry technique. We present some experimental results and discuss the application of this system to the study of ionospheric tilts.  相似文献   

18.
The spectra of high frequency waves backscattered at night by small scale (10–20 m) sub-auroral F-region irregularities often exhibit large Doppler shifts and widths in the local time sector 2000–2400. After local midnight the Doppler shifts and the widths of the spectra decrease rapidly. We present examples of experimental data, obtained with the two coherent backscatter radars of the EDIA1 experiment, showing the spectral characteristics just mentioned. From the Doppler shift measured at the two sites we deduced the perpendicular velocity of the irregularities, which can reach values as high as 2000 ms −1. These observations are interpreted using results of theoretical models which predict strong sub-auroral ion flow in the trough region.  相似文献   

19.
We report on Trimpi events observed at Durban (L = 1.69, 29°53′S, 31°00′E) and investigate the efficacy of gyroresonance scattering in precipitating electrons into the atmosphere at low L (<2). The rate of occurrence of Trimpis at Durban is less than one per day. Our observations include a number of daytime events on OMEGA signals from La Reunion. Using the full relativistic equations of motion, a test particle simulation is employed to find the region in parameter space where large pitch angle scattering occurs. We find that at low L the conditions for pitch angle scattering are less favourable than at higher L (L ∼ 4). Resonant electrons have high (relativistic) energies, interaction times are of the order of milliseconds (Ti ∼ 5 ms) and large wave amplitudes (Bw ∼ 200 pT) are required at whistler frequencies to produce pitch angle changes of greater than 1°. Large pitch angle scattering is needed near Durban since particles near the loss cone will have been lost in the South Atlantic Geomagnetic Anomaly. We note that the radio frequencies transmitted into the magnetosphere from lightning are too low to give effective electron scattering at low L. We suggest an explanation for the low rate of occurrence of Trimpis at Durban.  相似文献   

20.
In the introduction to his Spalt und Fuge, Hans-Jörg Rheinberger points to the possibility that we are currently experiencing a new turning point regarding forms of experimentation, which is characterized by the growing importance of high-throughput methods and big data analytics. This essay will explore the thesis that data-intensive research indeed constitutes a form of post-experimental research by interrogating research practices in precision medicine. Section 1 will introduce this thesis and highlight salient features of precision medicine as an example of post-experimental research. Section 2 suggests approach as a category that is broader than experimental system, as discussed by Rheinberger, and can serve to analyze and compare diverse forms of research, including experimental and post-experimental practices. The essay concludes with a reflection on how categories developed for the historiography of recent science might require an update when the science or its context changes (section 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号