首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An attempt is made to reconcile two competing views as to where the auroral distribution maps from in the magnetosphere. The structure of the aurora is shown to have two distinctive parts which vary according to the magnetic activity. The low latitude portion of the structured distribution may be a near-Earth central plasma sheet phenomenon while the high latitude portion is linked more closely to boundary layer processes. During quiet times, the polar arcs may be the ionospheric signature of a source region in the deep tail low latitude boundary layer/cool plasma sheet. The structured portion of the ‘oval’ has a dominantly near-Earth nightside source and corresponds to an overlap region between isotropic 1–10 keV electrons and 0.1–1 keV structured electrons. The ionospheric local time sector between 13 and 18 MLT is the meeting point between the dayside boundary layer source region and this near-Earth nightside source. Late in the substorm expansion phase and/or start of the substorm recovery phase, the nightside magnetospheric boundaries (both the low latitude and Plasma Sheet Boundary Layers) begin to play an increasingly important role, resulting in an auroral distribution specific to the substorm recovery phase. These auroral observations provide a means of inferring important information concerning magnetospheric topology.  相似文献   

2.
This study has used ionospheric and magnetic observational data obtained at a meridional chain of stations during the high latitude geophysical experiment ‘Taimir-82’ in the winter of 1982–1983. Mean statistical latitude-time distributions of the occurrence probability of various types of Es, their blanketing frequency and of the amplitude of geomagnetic field H-variations have been constructed. Based on these distributions and taking the Es properties into account, an analysis is made of the mutual correspondence of large-scale structures of the auroral ionosphere and ionospheric currents.Ionospheric currents flow mainly in the region of high E-layer ionization. With increasing magnetic activity, the zone of currents and the zone of ionization expand simultaneously toward lower latitudes. The evening eastward electrojet and the morning westward electrojet are localized inside the zone of diffuse auroral precipitation which is responsible for the formation of Es type r. The equatorial part of the midnight westward electrojet is also located in the zone of diffuse precipitation which coincides also with the region of maximum ionization of the E-layer. The polar part of this electrojet, which extends far into the dusk sector, is located in the zone of discrete auroral precipitation (a type Es). Whereas there exists in the meridional cross-section quite a definite relationship between the Harang discontinuity and ionospheric parameters, such a relationship is not manifested in the zonal cross-section of the Harang discontinuity.  相似文献   

3.
The dynamics and structure of the polar thermosphere and ionosphere within the polar regions are strongly influenced by the magnetospheric electric field. The convection of ionospheric plasma imposed by this electric field generates a large-scale thermospheric circulation which tends to follow the pattern of the ionospheric circulation itself. The magnetospheric electric field pattern is strongly influenced by the magnitude and direction of the interplanetary magnetic field (IMF), and by the dynamic pressure of the solar wind. Previous numerical simulations of the thermospheric response to magnetospheric activity have used available models of auroral precipitation and magnetospheric electric fields appropriate for a southward-directed IMF. In this study, the UCL/Sheffield coupled thermosphere/ionosphere model has been used, including convection electric field models for a northward IMF configuration. During periods of persistent strong northward IMF Bz, regions of sunward thermospheric winds (up to 200 m s−1) may occur deep within the polar cap, reversing the generally anti-sunward polar cap winds driven by low-latitude solar EUV heating and enhanced by geomagnetic forcing under all conditions of southward IMF Bz. The development of sunward polar cap winds requires persistent northward IMF and enhanced solar wind dynamic pressure for at least 2–4 h, and the magnitude of the northward IMF component should exceed approximately 5 nT. Sunward winds will occur preferentially on the dawn (dusk) side of the polar cap for IMF By negative (positive) in the northern hemisphere (reverse in the southern hemisphere). The magnitude of sunward polar cap winds will be significantly modulated by UT and season, reflecting E-and F-region plasma densities. For example, in northern mid-winter, sunward polar cap winds will tend to be a factor of two stronger around 1800 UT, when the geomagnetic polar cusp is sunlit, then at 0600 UT, when the entire polar cap is in darkness.  相似文献   

4.
Magnetospheric electrons from hundreds of keV to over 10MeV in energy have been systematically measured at geostationary altitude (6.6 RE) for well over a decade. We find evidence of significant diurnal, solar-rotational (27-day), annual, and solar-cycle (11-yr) variations in the fluxes of the relativistic electron component. We have also used low-altitude satellite data and sounding rocket measurements to characterize the location and strength of the relativistic electron precipitation into the atmosphere. We conclude that the magnetospheric electrons, when dumped into the middle atmosphere, represent a very significant ionization source which affects the pattern of conductivity, electric fields, and atmospheric chemistry. These measurements—when combined with global atmospheric modeling—suggest that relativistic electrons provide a robust coupling mechanism to impose long-term solar wind and magnetospheric variability onto the Earth's deep atmospheric regions. A strong 11-yr cycle of relativistic electron effects is found in available atmospheric data sets.  相似文献   

5.
A polar map of the occurrence rate of broad-band auroral VLF hiss in the topside ionosphere was made by a criterion of simultaneous intensity increases more than 5 dB above the quiet level at 5, 8, 16 and 20 kHz bands, using narrow-band intensity data processed from VLF electric field (50 Hz–30 kHz) tapes of 347 ISIS passes received at Syowa Station, Antarctica, between June 1976 and January 1983.The low-latitude contour of occurrence rate of 0.3 is approximately symmetric with respect to the 10–22 MLT (geomagnetic local time) meridian. It lies at 74° around 10 MLT, and extends down to 67° around 22 MLT. The high-latitude contour of 0.3 lies at invariant latitude of about 82° for all geomagnetic local times. The polar occurrence map of broad-band auroral VLF hiss is qualitatively similar to that of inverted-V electron precipitation observed by Atmospheric Explorer.(AE-D) (Huffman and Lin, 1981, American Geophys. Union, Geophysics Monograph, No. 25, p. 80), especially concerning the low-latitude boundary and axial symmetry of the 10–22 h MLT meridian.The frequency range of the broad-band auroral VLF hiss is discussed in terms of whistler Aode Cerenkov radiation by inverted-V electrons (1–30 keV) precipitated from the boundary plasma sheet. High-frequency components, above 12 kHz of whistler mode Cerenkov radiation from inverted-V electrons with energy below 40 keV, may be generated at altitudes below 3200 km along geomagnetic field lines at invariant latitudes between 70 and 77°. Low-frequency components below 2 kHz may be generated over a wide region at altitudes below 6400 km along the same field lines. Thus, the frequency range of the downgoing broad-band auroral hiss seems to be explained by the whistler mode Cerenkov radiation generated from inverted-V electrons at geocentric distances below about 2 RE (Earth's radius) along polar geomagnetic field lines of invariant latitude from 70 to 77°, since the whistler mode condition for all frequencies above 1 kHz of the downgoing hiss is not satisfied at geocentric distance of 3 re on the same field lines.  相似文献   

6.
This paper summarizes the results of measurements of the electrical conductivity σ and vertical component of the vector electric field Ez acquired from eight stratospheric balloon flights launched from Amundsen-Scott Station, South Pole, in the austral summer of 1985–1986. The major findings of this research are as follows
  • 1.(1) The data contribute to the set of global atmospheric electricity measurements and extend the work of COBB [(1977), Atmospheric electric measurements at the South Pole. In Electrical Processes in Atmospheres, Dolezalek H. and Reiter R. (eds), pp. 161–167. Steinkopf, Darmstadt, F.R.G.] to determine the electrical environment of the south polar region
  • 2.(2) The average vertical profile of the conductivity at the South Pole, when compared with profiles obtained at other Antarctic locations, suggests that the conductivity scale height may increase with increasing geomagnetic latitude across the polar cap.
  • 3.(3) The conductivity profiles measured at the South Pole and other Antarctic locations differ significantly from polar cap model profiles. On the basis of these measurements, the model profiles appear to require modification
  • 4.(4) The magnitudes of the Ez profiles were observed to vary from day-to-day by a factor of > 2
  • 5.(5) In all of the flights the air-Earth conduction current Jz, calculated as the product of Ez and σ, decreased with altitude in agreement with previous direct measurements of the air-Earth current by Cobb [( 1977), Atmospheric electric measurements at the South Pole. In Electrical Processes in Atmospheres, Dolezalek H. and Reiter R. (eds), pp. 161–167. Steinkopf, Darmstadt, F.R.G.]
  • 6.(6) The magnitude of Jz was 2–3 times larger than the global average, which can be attributed to the lower columnar resistance of the atmosphere above the high-elevation Antarctic plateau. The magnitude of Jz agrees with that observed by Cobb, if the Cobb measurements are multiplied by the Few and Weinheimer [(1986), Factor of 2 error in balloon-borne atmospheric conduction current measurements. J. geophys. Res.91, 10937] correction factor of 2
  • 7.(7) Ez from all of the flights during times of balloon float demonstrates characteristics of the classical ‘Carnegie’ diurnal variation, which is indicative of global influences on the ionospheric potential
  • 8.(8) The influence of geomagnetic activity was observed as a decrease in the amplitude of the diurnal variation of Ez with increasing geomagnetic activity index Kp, which is the predicted effect at the South Pole of the magnetospheric polar-cap potential superimposed on the ‘Carnegie’ potential variation.
  相似文献   

7.
Energetic protons entering the atmosphere will either travel as auroral protons or as neutral hydrogen atoms due to charge-exchange and excitation interactions with atmospheric constituents. Our objective is to develop a simple procedure to evaluate the Balmer excitation rates of Hα and Hβ, and produce the corresponding volume emission rates vs height, using semi-empirical range relations in air, starting from proton spectra observed from rockets above the main collision region as measured by Reasoneret al. [(1968) J. geophys. Res.73, 4185] and Søbraaset al. [(1974) J. geophys. Res.79, 1851]. The main assumptions are that the geomagnetic field is parallel and vertical, and that the pitch angle of the proton/hydrogen atom is preserved in collisions with atmospheric constituents before being thermalized. Calculations show that the largest energy losses occur in the height interval between 100 and 125 km, and the corresponding volume emission rate vs height profiles have maximum values in this height interval. The calculted volume emission rate height profile of Hβ compares favorably with that measured with a rocket-borne photometer.  相似文献   

8.
The middle and upper atmosphere and the ionosphere at high latitudes are studied with the EISCAT incoherent scatter radars in northern Scandinavia. We describe here the investigations of the lower thermosphere and the E-region, and the mesosphere and the D-region. In the auroral zone both these altitude regions are influenced by magnetospheric processes, such as charged particle precipitation and electric fields, which are measured with the incoherent scatter technique. Electron density, neutral density, temperature and composition are determined from the EISCAT data. By measuring the ion drifts, electric fields, mean winds, tides and gravity waves are deduced. Sporadic E-layers and their relation to gravity waves, electric fields and sudden sodium layers are also investigated with EISCAT. In the mesosphere coherent scatter occurs from unique ionization irregularities. This scatter causes the polar mesosphere summer echoes (PMSE), which are examined in detail with the EISCAT radars. We describe the dynamics of the PMSE, as well as the combination with aeronomical processes, which could give rise to the irregularities. We finally outline the future direction which is to construct the EISCAT Svalbard Radar for studying the ionosphere and the upper, middle and lower atmosphere in the polar cap region.  相似文献   

9.
More than two decades of magnetospheric exploration have led to a reasonably clear morphological picture of geomagnetic substorms, which is often summarized in terms of the near-Earth neutral line (NENL) model of substorms. Although this qualitative theory is quite comprehensive and explains a great many observations, it is hard pressed to explain both recent observations of consistently earthward flow within 19 RE and also the prompt onset of magnetic turbulence at 8 RE at the time of substorm onset. Other theories have recently been proposed which tend to be more quantitative, but which explain a more limited number of substorm observations. The challenge seems to be to understand the essential physics of these various quantitative theories and integrate them into a larger structure such as is provided by the near-Earth neutral line model.  相似文献   

10.
On 8 May 1986, between 1113 and 1600 UT, an isolated magnetospheric substorm was observed, during which the AE-index exceeded 700 nT (CDAW 9E event). Three available sets of measurements (a) of the solar-wind parameters (IMP-8 satellite), (b) of the magnetotail energy flux (ISEE-1 spacecraft), and (c) of ground magnetic observatories, allowed us to make a detailed study of the overall magnetospheric response to changes of the interplanetary magnetic field (IMF) direction, during this event of weak solar-wind coupling.In order to study the mechanisms and time-delays of the magnetospheric response to the abrupt increase of the solar-wind energy input, we have evaluated the total magnetospheric energy output UT following two different methods: (a) Akasofu's method, taking the ring current decay time τR constant, and (b) Vasyliunas' method where the values of ut are independent of the solar-wind energy input as determined from the epsilon parameter. Both methods suggest that the driven system has been considerably developed during this substorm, while an unloading event has been superposed at the expansion onset.  相似文献   

11.
In order to investigate the particles which produce the polar cap aurora at the Vostok station in Antarctica, charged particle data obtained by the DMSP satellites for some days in a period from April to August 1985 were surveyed. Due to the satellite orbit the local time range in which the data were available was the morning sector. For all the events when sun-aligned arcs were observed on the ground the simultaneous DMSP measurements on almost the same field line showed an increased integral number flux J. > 108 (cm8/s/sr)−1 of the precipitating electrons with energy Ee > 200 eV. The electron spectra with double peaks are typical of intense electron precipitation in the polar cap arcs. The most noticeable feature of ion spectra in the polar cap arcs is the prominent minimum in ion flux in the energy range 0.1 < Ei < 1 keV in contrast with the oval precipitation ; this feature gives the possibility to separate the polar arcs from the aurora in the oval. In some events the satellite crossed the system of two widely separated arcs ; one of them was a sun-aligned arc whereas the other was circular at constant latitude according to the Vostok data. The analysis of the DMSP electron and ion precipitation data has shown that in these events the latitude-oriented arcs are located in the polar cap and not in the auroral oval.  相似文献   

12.
Kellogg, W. W. (1961, J. Met. 18, 373) suggested that transport of atomic oxygen from the summer into the winter hemisphere and subsequent release of energy by three body recombination, O + O + N2O2 + N2 + E, may contribute significantly to the so-called mesopause temperature anomaly (increase in temperature from summer to winter). Earlier model calculations have shown that Kellogg's mechanism produces about a 10% increase in the temperature from summer to winter at 90 km. This process, however, is partly compensated by differential heating from absorption of UV radiation associated with dissociation of O2. In the auroral region of the thermosphere, there is a steady (component of) energy dissipation by Joule heating (with a peak near 130 km) causing a redistribution and depletion of atomic oxygen due to wind-induced diffusion. With the removal of O. latent chemical energy normally released by three body recombination is also removed, and the result is that the temperature decreases by almost 2% near 90 km. Through dynamic feedback, this process reduces the depletion of atomic oxygen by about 25% and the temperature perturbation in the exosphere from 10% to 7% at polar latitudes. Under the influence of the internal dynamo interaction, the prevailing zonal circulation in the upper thermosphere (small in magnitude) changes direction when the redistribution of recombination energy is considered. The above described effects are very sensitive to the adopted rates of eddy diffusion. They are also strongly time dependent and are significantly reduced for disturbances associated with magnetic storms.  相似文献   

13.
Observations made on 10 July 1987 with the EISCAT UHF radar are presented. The F-region measurements of both electron density and field-aligned ion velocity show that an upward propagating gravity wave with a period of about 1 h is present. The origin of the gravity wave is probably auroral. The E-region ion velocities show a tidal wave and both upward and downward propagating gravity waves. The gravity waves have three dominant periods with a possible harmonic relationship and similar vertical wavelengths. These waves are either reflected at a single reflection level, ducted between two levels, or they are generated in a non-linear interaction between gravity and tidal waves. The E-region electron density is dominated by particle precipitation. After a short burst of more intense precipitation, a sporadic E-layer forms at 105km and then disappears 40min later. Within this time, the layer rises and falls by a few kilometres, following closely the motion of a convergent null in the velocity profile. We suggest that the formation and destruction of this layer is controlled by both the precipitation, which indirectly provides a source of metal ions through charge exchange, and the superposition of gravity waves and the tidal wave.  相似文献   

14.
The characteristics of metallic and molecular ion sporadic-E (Es) layers, formed by the action of strong electric fields at auroral latitudes, are examined using computer simulations. It is found that, for electric fields directed between northward and westward (northern hemisphere), thin metallic ion layers (<2 km thick) can be formed above about 105 km altitude. For electric fields directed from westward, through southward, to south-eastward, slightly thicker (4–6 km thick) metallic ion layers can form between 90 and 105 km altitudes. Thin layers of molecular ions can be formed by electric fields directed between north and west if the ion density is low. Examples of Es layers observed by the EISCAT radar, together with simultaneous observations of electric fields and ion drifts are presented which show good agreement with the simulations. The relationship between the lower-altitude Es layers and sudden sodium layers (SSLs) is discussed leading to an explanation of some of the characteristics of SSLs at high latitude. A possible involvement of smoke particles in the formation of both Es layers and SSLs is proposed.  相似文献   

15.
During many magnetospheric substorms, the auroral oval near midnight is observed to expand poleward in association with strong negative perturbations measured by local ground magnetometers. We show Sondrestrom and EISCAT incoherent scatter radar measurements during three such events. In each of the events, enhanced ionization produced by the precipitation moved northward by several degrees of latitude within 10–20 min. The electric fields measured during the three events were significantly different. In one event the electric field was southward everywhere within the precipitation region. In the other two events a reversal in the meridional component of the field was observed. In one case the reversal occurred within the precipitation region, while in the other case the reversal was at the poleward boundary of the precipitation. The westward electrojet that produces the negative H-perturbation in the ground magnetic field has Hall and Pedersen components to varying degrees. In one case the Hall component was eastward and the Pedersen component was westward, but the net magnetic H-deflection on the ground was negative. Simultaneous EISCAT measurements made near the dawn meridian during one of the events show that the polar cap boundary moved northward at the same time as the aurora expanded northward at Sondrestrom. Most of the differences in the electrodynamic configuration in the three events can be accounted for in terms of the location at which the measurements were made relative to the center of the auroral bulge.  相似文献   

16.
In a joint campaign involving EISCAT, the Cornell University Portable Radar Interferometer (CUPRI), and sounding rockets, we have observed short-lived elevations of E-region electron temperatures, indicating the presence of strong electric fields. The use of a new pulse-code technique has considerably improved our EISCAT data in regions of low ionospheric electron densities. It has been found that strong and apparently short-lived enhancements of electric fields and associated E-region electron temperatures occur more commonly than long-lived ones. However, earlier EISCAT data with simultaneous optical recordings (and also some CUPRI radar data from the ERRRIS campaign) indicate that many of these events are, in fact, not short-lived, but occur in localized regions and are associated with drifting auroral forms. We show that the observed elevations of electron temperatures are created by very intense electric fields which can be found within narrow regions adjacent to auroral arcs. We discuss our observations against the background of models for electric field suppression or enhancement in the vicinity of auroral precipitation.  相似文献   

17.
When transmitting on 5.8 MHz the Bribie Island HF radar array synthesizes a beam that is 2.5 wide. The beam can be steered rapidly across the sky or left to dwell in any direction to observe the fading rates of echoes within a small cone of angles. With the beam held stationary, the time scale associated with deep fading of F-region echoes is usually more than 5 min. This is consistent with the focusing and defocusing effects caused by the passage of ever-present medium-scale travelling ionospheric disturbances (TIDs). On occasion the time scale for deep fading is much shorter, of the order of tens of seconds or less, and this is thought to be due to the interference of many echoes from within the beam of the radar. It is shown that the echoes are not due to scatter from fine structure in the F-region, but rather due to the creation of multiple F-region paths with differing phase lengths by small, refracting irregularities in underlying, transparent spread sporadic-E, (Spread-Es). The natural drift of the Spread-Es causes the phase paths of the different echoes to change in different ways causing the interference.Two methods are used to investigate the rapidly fading F-region signals. Doppler sorting of the refracted F-region signal does not resolve echoes in angle of arrival suggesting that many echoes exist within a Fresnel zone [Whitehead and Monro (1975), J. atmos. terr. Phys. 37, 1427]. Statistical analysis of F-region amplitude data indicates that when the range spread in Es is severe on ionograms, then a modified Rayleigh distribution caused by the combination of 10 or so echoes is most appropriate. Using knowledge of the refracting process the scale of Es structure is deduced from these results. Both methods find a Spread-Es irregularity size of the order of 1 km or less. It is proposed that the Rayleigh type F-region signals seen by Jacobsonet al. [(1991b), J. atmos. terr. Phys. 53, 63] are F-region signals refracted by spread-Es.  相似文献   

18.
The association of the phase of the H and D components of the Pi(c) pulsations with the phase of the broadscale H component magnetic bays confirms that Pi(c) pulsations result from auroral electron precipitation induced conductivity enhancements of existing current systems. Statistically determined relationships between the time delays and phases of the H and D components of magnetic Pi(c) pulsations with respect to the optical pulsations are used to infer a delay between the E-region Hall and Pedersen current fluctuations associated with the pulsating electron fluxes. Theoretical modelling of an auroral pulsation patch, as per Oguti and Hayashi, is used to show that the polarization of the Pi(c) pulsations is controlled principally by the delay between the Hall and Pedersen currents and the direction of the background E-region electric field.  相似文献   

19.
Many papers have been published to devise models to describe the sources of large and medium scale atmospheric gravity waves (AGWs) in the auroral oval ionosphere. One of the models proposed by Chimonas and Hines [(1970) Planet. Space Sci.18, 565] calculated the relative importance of Lorentz force and Joule heating as sources of AGWs in the auroral regions based on certain assumptions. In this paper, we develop a general theory to describe the behavior of the AGW source terms. It has been found that the source terms which generate AGWs are closely related to the velocities and frequencies of AGWs, and that the Lorentz force is dominant in generating the vertical velocity perturbation of large scale AGWs. The formulas which determine the source term contributions are derived. This relationship gives us the possibility to predict what kind of AGW will be generated by observing the source terms, or conversely perhaps to deduce some of the source characteristics by measuring properties of the traveling ionospheric disturbances (TIDs).  相似文献   

20.
As part of the MAC/EPSILON campaign in northern Norway during October and November 1987, five rocket-borne payloads made three-axis electric field measurements of the middle atmosphere. Flights 31.066 and 31.067 consisted of large multi-experiment packages, while the other three flights (30.036, 30.037 and 30.038) were devoted primarily to electrical measurements. Simultaneous measurements of the horizontal electric field made by flights 31.066 and 30.036 were in general agreement in their limited altitude region of overlap. A simultaneous small temporal feature was observed in both datasets. The relatively more extensive horizontal E-field datasets from 31.066 and 31.067 both exhibited a decreasing mapping function with decreasing altitude, which is an indication of the observation of fields from a local auroral patch. Small-scale variations in the horizontal fields of the flights were similar to observed wave-like variations in the neutral wind field. No unusual features were observed at high altitudes in the measured E1 field. Two of the payloads observed small vertical layer structures between 40 and 50 km. No electric field structure was observed in association with the presence of a sudden sodium layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号