首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies of elevated carbonate boulder deposits on several rock islands near Bangkok have indicated that Thailand's capital city may not be as protected from typhoon strikes as previously thought. Here, new evidence is presented for past high‐energy wave (HEW) events in the form of statistically significant patterns of boulder alignment on exposed rocky shorelines of Ko Larn island. The long‐axis orientations of 193 coastal sandstone boulders were analysed across four study sites. Several scenarios for the unimodal, bimodal, and polymodal patterns found can be envisaged. Either the most recent HEW event was the strongest—in which case most clasts were rearranged unimodally (one observation site), or the strongest HEW event was earlier and subsequent weaker ones realigned only smaller boulders to produce bimodal or polymodal patterns (three observation sites). Inferred northeastward or eastward onshore flow directions are consistent with palaeo‐typhoons penetrating into the Bay of Bangkok on northwestward curving tracks. The calculated minimum flow velocities required to transport all sampled boulders are 5.5–7.8 m s?1, similar to other findings throughout the Asia‐Pacific region. It was observed that the absence of a fitted boulder geomorphology lends credence to the earlier proposed time frame of 150–200 years between typhoon phases in the upper Gulf of Thailand. The current work has provided additional insights into the characteristics of past HEW events that have a possibility of reoccurring again at some time in the future. Our findings continue to raise awareness for a reassessment of the risks of coastal hazards for the Chao Phraya River delta and densely populated Bangkok, for which storm surge modelling should be an urgent priority, so as to give better perceptions on how typhoon‐driven marine incursion would impact the city.  相似文献   

2.
An unusual coarse, shelly sedimentary unit is found elevated above present mean sea level in a sheltered pocket embayment at Old Punt Bay in south‐eastern Australia. The coarse sediments, diverse microfauna, and large shelly macrofauna of mixed affinity suggest that the deposit is the result of high‐energy deposition. The deposit was previously thought to have been deposited 1000–1300 cal bp based on one shell dated using 14C and amino acid racemisation. However, additional 14C dating indicates a likely age of ~2500 cal bp . Regardless of age constraints, the presence of rock‐encrusting oyster shells and large articulated bivalves, suggests that the depositional event must have been capable of removing and transporting coarse sediments (rock clasts), bivalves, and oysters shells from a variety of seaward environments and depositing them with little abrasion, something storm waves are unlikely to do. The deposit may be tsunamigenic. If a tsunami origin is accepted, the new dating results indicate that it is possibly coeval with a tsunami event previously reported to have affected several other sites along the coast of New South Wales at c. 2900 cal bp . Consequently, this deposit provides evidence for the event at a new site and importantly, a tighter constraint on the likely date of the events occurrence. It further adds weight to the developing catalogue of palaeotsunamis that may have affected the south‐eastern coast of Australia. Regardless of the deposit's origins, if viewed from a coastal planning perspective, this deposit indicates that this part of the coast has experienced large‐scale overwash events in the past that if repeated, would be catastrophic. There are serious implications for risk management.  相似文献   

3.
The 137Cs (caesium‐137) method was used to investigate medium‐term rates of sediment deposition on the floodplain of the Labasa River, on Vanua Levu island in northern Fiji. The Labasa basin is commercially important for sugarcane farming, which provides much revenue and sustains the economy in the greater Labasa area. Alluvium was sampled at three riverbank sites in vertical increments of 30 mm. Measured net vertical accretion rates, based on analysis of depth‐profiles of 137Cs activity, ranged from 10 mm yr?1 at a low‐lying site near a tributary confluence with the main river, to 60 mm yr?1 on a levée that was elevated slightly above the adjacent floodplain. These rates of accretion are high, but in general agreement with rates recorded using similar methods in other tropical Pacific island river systems. Soil erosion under sugarcane on hilly parts of the lower Labasa basin is an important factor in rapid floodplain development. Observations made during Cyclone Ami, which traversed Vanua Levu island in early 2003, illustrate the major contribution of severe storm events to floodplain sediment supply, by triggering numerous landslides on catchment slopes and in‐channel debris floods, and by generating large‐magnitude overbank floods.  相似文献   

4.
K. LI  C. CAI  H. HE  L. JIANG  L. CAI  L. XIANG  S. HUANG  C. ZHANG 《Geofluids》2011,11(1):71-86
Petrographic features, isotopes, and trace elements were determined, and fluid inclusions were analyzed on fracture‐filling, karst‐filling and interparticle calcite cement from the Ordovician carbonates in Tahe oilfield, Tarim basin, NW China. The aim was to assess the origin and evolution of palaeo‐waters in the carbonates. The initial water was seawater diluted by meteoric water, as indicated by bright cathodoluminescence (CL) in low‐temperature calcite. The palaeoseawater was further buried to temperatures from 57 to 110°C, nonluminescent calcite precipitated during the Silurian to middle Devonian. Infiltration of meteoric water of late Devonian age into the carbonate rocks was recorded in the first generation of fracture‐ and karst‐filling dull red CL calcite with temperatures from <50°C to 83°C, low salinities (<9.0 wt%), high Mn contents and high 86Sr/87Sr ratios from 0.7090 to 0.7099. During the early Permian, 87Sr‐rich hydrothermal water may have entered the carbonate rocks, from which precipitated a second generation of fracture‐filling and interparticle calcite and barite cements with salinities greater than 22.4 wt%, and temperatures from 120°C to 180°C. The hydrothermal water may have collected isotopically light CO2 (possibly of TSR‐origin) during upward migration, resulting in hydrothermal calcite and the present‐day oilfield water having δ13C values from ?4.3 to ?13.8‰ and showing negative relationships of 87Sr/86Sr ratios to δ13C and δ18O values. However, higher temperatures (up to 187°C) and much lower salinities (down to 0.5 wt%) measured from some karst‐filling, giant, nonluminescent calcite crystals may suggest that hydrothermal water was deeply recycled, reduced (Fe‐bearing) meteoric water heated in deeper strata, or water generated from TSR during hydrothermal water activity. Mixing of hydrothermal and local basinal water (or diagenetically altered connate water) with meteoric waters of late Permian age and/or later may have resulted in large variations in salinity of the present oilfield waters with the lowest salinity formation waters in the palaeohighs.  相似文献   

5.
An assessment of slope erosion at Tin Camp Creek catchment, Arnhem Land, Northern Territory, Australia, was carried out using the fallout environmental radioisotope caesium‐137 (137Cs) as an indicator of soil erosion status, two numerical models (SIBERIA and the Revised Universal Soil Loss Equation (RUSLE)) and erosion pins. This undisturbed drainage basin is situated in the seasonally wet‐dry tropics, with high energy storms and a mean annual rainfall of 1389 mm. Tin Camp Creek catchment is unaffected by European agriculture or pastoral activities, but often experiences fire during the dry season. Two transects were sampled for 137Cs in 2002 and 2004, and two models were used to convert 137Cs measurements into soil loss estimates. Two methods using the theoretical Profile Distribution Model (PDM) gave net soil redistribution rates between +2.72 and –22.19 t ha?1 yr?1 and +2.95 and –24.06 t ha?1 yr?1, respectively, while an Australian empirical model (AEM) for uncultivated soils produced estimates between +1.84 and –7.00 t ha?1 yr?1 (negative values indicate soil erosion, positive, deposition). The RUSLE gave estimated soil losses for the two transects of approximately 10 t ha?1 yr?1, while the SIBERIA model produced values between 0.5 and 2 t ha?1 yr?1 for the transects and between 3.5 and 11 t ha?1 yr?1 for the total catchment. Average net soil losses of 14 and 15 t ha?1 yr?1 for the total catchment and slopes, respectively, were measured by erosion pins. The soil losses in the catchment are similar to those for some other transects in the Northern Territory and the Kimberley region of Western Australia (measured by the 137Cs AEM), even though these areas are affected by pastoral activities. This may be at least partly explained by erosion in Tin Camp Creek catchment during high intensity rainstorms at the commencement of the wet season, especially if the slopes have been affected by fire during the previous dry season.  相似文献   

6.
The origin of large‐scale ancient dolomite is one of the most hotly debated topics in sedimentology. The Loushanguan group of the upper 3rd‐Furongian Cambrian series on the south‐eastern margin of the Sichuan Basin consists of numerous dolomites, and the origins of these dolomites have never been reported previously although they are probably good hydrocarbon reservoirs. Based on a systematic analysis of petrology, fluid inclusions, carbon and oxygen isotopes, trace elements and rare earth elements (REEs), this study provides some unique insights into the origins of the dolomites. Four dolomite types have been identified in the study area: dolomicrite, fabric‐retentive oolitic dolomite, fabric‐obliterative dolomite and saddle dolomite cement. In the dolomicrite and fabric‐retentive oolitic dolomite, high Sr contents (with respect to the fabric‐obliterative dolomite) and the lack of two‐phase aqueous inclusions suggest that they formed at shallow‐to‐intermediate burial depths at low temperatures (<50–60°C). Carbon and oxygen isotopes and seawater‐like REE+Y characteristics of the dolomicrite and fabric‐retentive oolitic dolomite indicate that the dolomitizing fluids were evaporated seawater or slightly modified seawater. The obliteration of the original sedimentary fabric and relatively low δ18O and Sr values compared to the fabric‐retentive dolomite indicate that fabric‐obliterative dolomite formed at intermediate‐to‐deep burial diagenesis. The chemical composition approaches pure dolomite and the REE+Y characteristics are similar to those of the fabric‐retentive dolomite, indicating that the fabric‐obliterative dolomite was formed due to the recrystallization of the previously formed fabric‐retentive dolomite at elevated burial depths and temperatures. High fluid inclusion homogenization temperatures (115–150°C), low δ18O values, nonplanar‐a crystals and seawater‐like REE+Y characteristics suggest that saddle dolomite cement formed by reprecipitation of dolomite that related to seawater‐driven and deep burial fluid. In the study area, dolomicrite and fabric‐retentive oolitic dolomite may have been formed by penecontemporaneous or seepage‐reflux dolomitization during early‐stage diagenesis. Subsequently, during progressive burial, most of the fabric‐retentive dolomite was converted into fabric‐obliterative dolomite by recrystallization. This study confirms that fabric‐obliterative dolomite was the main dolomite type, and although deeply buried, these Cambrian dolomites most likely have preserved coeval seawater geochemical signals.  相似文献   

7.
T. K. KYSER 《Geofluids》2007,7(2):238-257
Sedimentary basins are the largest structures on the surface of our planet and the most significant sources of energy‐related commodities. With time, sedimentary successions in basins normally are subjected to increasingly intense diagenesis that results in differential evolution of basin hydrology. This hydrologic structure is in turn vitally important in determining how and where deposition of metals may occur. Fluids in all basins originate and flow as a result of sedimentological and tectonic events, so that fluid histories should reflect the control of both lithology and tectonism on ore deposition. Sandstone lithologies, in particular, reflect fluid‐flow events because they are normally the major aquifers in basins. However, early cementation results in occlusion of primary permeability in some facies (diagenetic aquitards) whereas in others, permeability develops due to the dissolution of unstable grains (diagenetic aquifers). Particularly for ore deposits in Precambrian basins, identification of paleohydrologic systems during basin evolution requires the integration of data derived from tectonics, sedimentology, stratigraphy, diagenesis, geochemistry and geology. Assessment of all these data is a prerequisite for the ‘holistic basin analysis’ needed to guide the search for basin‐hosted ores. Recent results from the Paleoproterozoic Mt Isa and McArthur basins in northern Australia serve as a template for exploring for mineral deposits in basins. Basinal fluids were saline, 200–300°C and evolved primarily from meteoric water in the Mt Isa Basin and from seawater in the McArthur Basin during burial to depths of 4–12 km. The δDfluid and δ18Ofluid values in these brines were isotopically identical to those in the Zn‐Pb, Cu and U deposits. Geochemical changes of various lithologies during alteration support detrital minerals as the major source of the U, and volcanic units proximal to diagenetic aquifers as a source for the transition metals. Ages of diagenetic phases extracted from aquifer lithologies reveal that fluid migration from the diagenetic aquifers effectively covers the period of formation for U, Zn‐Pb and Cu mineralization, and that the deposits formed in response to tectonic events reflected in the apparent polar wandering path for the area. Sequence stratigraphic analysis and models of fluid flow also indicate that basinal reservoirs were likely sources for the mineralizing fluids. Thus, diagenetic aquifer lithologies were being drained of fluids at the same time as the deposits were forming from fluids that were chemically and isotopically similar, linking diagenesis and fluid events within the basin to the formation of the deposits.  相似文献   

8.
The burials of famous Xiongnu people are a unique source of information about Xiongnu culture, due to the variety of organic findings. SRXRF analysis of hair, clay, bones, teeth and woollen cloth was carried out. An anomalously high copper content was observed in all hair samples, whereas the levels of copper in bone and clay were low. To define the hair morphology and the elemental distribution in the hair cross‐section, high‐resolution X‐ray computed tomography (HRXCT) and energy‐dispersive spectroscopy (EDS) with scanning electron microscopy (SEM) were used. The X‐ray absorption fine‐structure method (XAFS) was applied to determine the local copper environment. The majority of the copper species in the hair and enamel samples are present as Cu2+ cations in a distorted octahedral (4 + 2) coordination, surrounded by light ligands (oxygen/nitrogen). A similar distorted octahedral coordination is typical for both inorganic mixed oxide/hydroxide Cu nanosystems and metal–organic Cu complexes (with oxygen/nitrogen).  相似文献   

9.
The Illawarra Region some 80 kilometres south of Sydney is characterised by a prominent coastal escarpment that rises to 700 m within 12 km of the coast and forms a locus for frequent, high intensity rainfall events. One of the most recent recorded events occurred on 17 August 1998 with rainfall intensities at several pluviometers exceeding 120 mm hr‐1 over a duration of one hour, with up to 249 mm falling in 3.5 hours during the main storm burst. Detailed pluviometer data indicate that the storm was non‐stationary and moved down catchment producing a widespread zone of 120 mm hr‐1 intensity rainfall over a 30 minute duration across mid‐lower catchment areas after similar intensity but longer duration rainfall in catchment headwaters. Slope‐area reconstructions of peak discharge indicate that small catchments on the escarpment within the zone of maximum intensity experienced close to 100% rainfall‐runoff relationships, with peak discharges correlated to short duration (<1 hr) peak rainfall intensities. Widespread erosion occurred particularly where urban development had encroached on natural water courses. Debris/hyperconcentrated flows originating from both anthropogenic and natural sediment sources caused damage to urban areas. This paper provides an overview of the spatial and temporal characteristics of the 17 August 1998 storm, the hydrologic and geomorphic response of the streams, and the nature of damage to urban areas. It reassesses the frequency of recent high‐magnitude rainfall/flood events in the region, discussing the relationships between rainfall intensities, estimates of flood magnitudes and stormwater channel capacities.  相似文献   

10.
To investigate the kinetics of interfacial energy‐driven fluid infiltration, experiments were carried out in a quartzite–water system at 621–925°C and 0.8 GPa. Infiltration couples were made by juxtaposing presynthesized dry quartzite cylinders and fluid reservoirs. The infiltration process was confirmed by the presence of pores at the quartzite grain edges. As predicted from theoretical considerations and previous experiments, wetting fluids such as pure water and NaCl aqueous solution infiltrated into quartzite, whereas nonwetting CO2‐rich fluids did not. Newly precipitated quartz layers at the surfaces of the infiltrated sample proved that infiltration took place by a dissolution–precipitation mechanism. The enhancement of grain growth by fluid infiltration was observed over the entire range of experimental temperatures. The fluid fraction, gauged by the porosity of the run products, increases at the infiltration front and then decreases towards the fluid reservoir to form a high‐porosity zone with a maximum porosity of 2.3–2.9%. As infiltration proceeds, the high‐porosity zone advances like a travelling wave. This porosity wave is probably caused by a grain curvature gradient resulting from preferential grain growth in the infiltrated part of the quartzite, perhaps combined with other factors. The infiltration kinetics were modelled with a steady‐state diffusion model over the high‐porosity zone. The solubility difference between dissolving and precipitating grains was deduced to be 2 × 10?2?3 × 10?1 wt %. The experimentally obtained infiltration rate of aqueous fluid in the steady‐state diffusion regime (2 ± 0.5 × 10?8 m sec?1 at 823°C) is much faster than the estimated metamorphic fluid flux rates, so that interfacial energy‐driven fluid redistribution in quartz‐rich layers could significantly contribute to the fluid flux in high‐grade metamorphism, at least over a short distance. Cathodoluminescence observations of the run products revealed that the grain growth of quartzite in the presence of fluid proceeds extensively, which would promote the chemical equilibration between fluid and rock more effectively than would volume diffusion in quartz crystals.  相似文献   

11.
This study presents a provenance analysis of the Neolithic obsidian assemblages from the early to mid‐sixth millennium bc settlement at Göytepe, Azerbaijan. The study is unique in that (1) it involves a complete, non‐selected obsidian assemblage (901 artefacts) from one particular area of the site; (2) the material is derived from a well‐stratified sequence of 10 securely radiocarbon‐dated architectural levels; and (3) the use of an extraordinarily wide range of sources (more than 20) was identified by provenance analysis using energy‐dispersive X‐ray fluorescence. The results reveal a previously unknown diachronic change in obsidian use in the region, suggesting the occurrence of significant socioeconomic changes during the Late Neolithic of the southern Caucasus.  相似文献   

12.
Petrography, geochemistry (stable and radiogenic isotopes), and fluid inclusion microthermometry of matrix dolomite, fracture‐filling calcite, and saddle dolomite in Ordovician to Devonian carbonates from southwestern Ontario, Canada, provide useful insights into fluid flow evolution during diagenesis. The calculated δ18Ofluid, ΣREE, and REESN patterns of matrix and saddle dolomite suggest diverse fluids were involved in dolomitization and/or recrystallization of dolomite. The 87Sr/86Sr ratios of dolomite of each succession vary from values in the range of coeval seawater to values more radiogenic than corresponding seawater, which indicate diagenetic fluids were influenced by significant water/rock interaction. High salinities (22.4–26.3 wt. % NaCl + CaCl2) of Silurian and Ordovician dolomite–hosted fluid inclusions indicate involvement of saline waters from dissolution of Silurian evaporites. High fluid inclusion homogenization temperatures (>100°C) in all samples from Devonian to Ordovician show temperatures higher than maximum burial (60–90°C) of their host strata and suggest involvement of hydrothermal fluids in precipitation and/or recrystallization of dolomite. A thermal anomaly over the mid‐continent rift during Devonian to Mississippian time likely was the source of excess heat in the basin. Thermal buoyancy resulting from this anomaly was the driving force for migration of hydrothermal fluids through regional aquifers from the center of the Michigan Basin toward its margin. The decreasing trend of homogenization temperatures from the basin center toward its margin further supports the interpreted migration of hydrothermal fluids from the basin center toward its margin. Hydrocarbon‐bearing fluid inclusions in late‐stage Devonian to Ordovician calcite cements with high homogenization temperatures (>80°C) and their 13C‐depleted values (approaching ?32‰ PDB) indicate the close relationship between hydrothermal fluids and hydrocarbon migration.  相似文献   

13.
The Dongsheng uranium deposit, the largest in situ leach uranium mine in the Ordos Basin, geometrically forms a roll‐front type deposit that is hosted in the Middle Jurassic Zhiluo Formation. The genesis of the mineralization, however, has long been a topic of great debate. Regional faults, epigenetic alterations in surface outcrops, natural oil seeps, and experimental findings support a reducing microenvironment during ore genesis. The bulk of the mineralization is coffinite. Based on thin‐section petrography, some of the coffinite is intimately intergrown with authigenic pyrite (ore‐stage pyrite) and is commonly juxtaposed with some late diagenetic sparry calcite (ore‐stage calcite) in primary pores, suggesting simultaneous precipitation. Measured homogenization temperatures of greater than 100°C from fluid inclusions indicate circulation of low‐temperature hydrothermal fluids in the ore zone. The carbon isotopic compositions of late calcite cement (δ13CVPDB = ?31.0 to ?1.4‰) suggest that they were partly derived from sedimentary organic carbon, possibly from deep‐seated petroleum fluids emanating from nearby faults. Hydrogen and oxygen isotope data from kaolinite cement (δD = ?133 to ?116‰ and δ18OSMOW = 12.6–13.8‰) indicate that the mineralizing fluids differed from magmatic and metamorphic fluids and were more depleted in D (2H) than modern regional meteoric waters. Such a strongly negative hydrogen isotopic signature suggests that there has been selective modification of δD by CH4±H2S±H2 fluids. Ore‐stage pyrite lies within a very wide range of δ34S (?39.2 to 26.9‰), suggesting that the pyrite has a complex origin and that bacterially mediated sulfate reduction cannot be precluded. Hydrocarbon migration and its role in uranium reduction and precipitation have here been unequivocally defined. Thus, a unifying model for uranium mineralization can be established: Early coupled bacterial uranium mineralization and hydrocarbon oxidation were followed by later recrystallization of ore phases in association with low‐temperature hydrothermal solutions under hydrocarbon‐induced reducing conditions.  相似文献   

14.
The excavation in the 1890s of a skeleton of the warm‐water marine mammal Dugong dugon, associated with Aboriginal artefacts, from a Botany Bay salt marsh, marked the beginning of speculation about climate and sea level change in Australia over the period of human occupation. The dugong bones have recently been dated, giving a conventional 14C age of 5520±70 years BP, which is consistent with three older 14C dates for a layer of buried trees that underlies much of the north Botany sediments. The carefully drawn cross‐sections of depositional strata produced by the original discoverers allow further interpretation of the pattern of Holocene sea‐level fluctuations in the Sydney region. Layers of estuarine sediment, such as the one containing the dugong skeleton, are inter‐bedded with peat layers containing in situ roots and stumps, suggesting that the site alternated between sub‐aerial exposure and submergence throughout the Holocene. The presence of the dugong is suggestive of warmer conditions, and its inland location indicates a more extensive Botany Bay in the recent past. This is in agreement with other work from southern New South Wales describing both warm‐water marine species and higher sea levels several thousand years ago.
相似文献   

15.
Hip fractures have high incidence rates in many current groups and are associated with high morbidity, mortality, and considerable expenditure. Although hip fractures associated with significant traumatic events can occur at any age, many hip fractures occur in older adults. To date, few hip fractures have been reported from archaeological skeletal material, and a number of hypotheses have been suggested for this. This research presents a comprehensive assessment of hip fractures in archaeological bone; 1597 adult (18+ years) skeletons from eight urban post‐medieval sites from England dating from the 18th and 19th centuries were recorded, and contemporary medical texts reviewed. This adult sample included 834 males and 652 females as well as 11 persons of undetermined sex. Ways of classifying and describing fractures in the clinical literature were reviewed and a methodology applicable to paleopathology determined. Of this sample, 15 (0.94%) had fractures in the femoral neck or intertrochanteric area: nine males, four females, and two individuals of undetermined sex. The numbers of fractures in males were interesting and most likely represent examples of accidental trauma as well as osteoporosis‐related fractures, the latter receiving growing awareness in recent clinical literature. Overall there was an age‐related trend with more individuals aged 50+ years with fractures than in other age categories. Underlying osteoporosis was potentially a complicating factor in five individuals and was likely associated with a vitamin D deficiency osteomalacia and a metastatic neoplastic condition in a further two cases. Fractures occurring close to the time of death and healed fractures were observed, indicating that the risk of mortality following this trauma was not consistent across this 18th and 19th century sample. Skeletal and historical evidence presented in this study indicate that the impact of hip fracture injuries varied, with survival likely linked to the fracture type. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Ancient glass vessel fragments belonging to the seventh to ninth centuries ad , from the Ko Kho Khao, Laem Pho and Khuan Lukpad sites in southern Thailand, were studied. The glass vessel fragment samples are a collection belonging to the Department of Archaeology, the 15th Regional Office of Fine Arts of Thailand. The chemical compositions of the glasses were analysed using a modified portable energy‐dispersive X‐ray fluorescence spectrometer (OURSTEX 100FA‐II) by the introduction of a MOXTEK® AP3.3 polymer window (5 mm2?) to the KETEK silicon drift detector for the measurement of light elements. The non‐destructive analysis was performed at the National Museum, Phuket, in Thailand. It is shown that the glass chemical compositions belong to mineral and plant‐ash based soda–lime–silicate glass. The origins of the glass artefacts are discussed in terms of raw materials and glass decoration, and compared with previously reported similar typological glasses from sites in the port city of Rāya and the Monastery of Wadi al‐Tur in Egypt.  相似文献   

17.
Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic hydrothermal‐monitoring effort encompassing 25 sites and 10 of the highest‐risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or hydrothermal solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was <2.5°C at Mount Baker. Variability in ground temperature records from the summit fumarole sites is temperature‐dependent, with the hottest sites tending to show less variability. Seasonal variability in the hydrothermal solute flux from magmatically influenced springs varied from essentially undetectable to a factor of 5–10. This range of observed behavior owes mainly to the local climate regime, with strongly snowmelt‐influenced springs and streams exhibiting more variability. As of the end of the 2012 field season, there had been 87 occurrences of local seismic energy densities approximately ≥ 0.001 J/m3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast‐evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long‐term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal‐monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.  相似文献   

18.
The chemical evolution of fluids in Alpine fissure veins (open cavities with large free‐standing crystals) has been studied by combination of fluid inclusion petrography, microthermometry, LA‐ICPMS microanalysis, and thermodynamic modeling. The quartz vein systems cover a metamorphic cross section through the Central Alps (Switzerland), ranging from subgreenschist‐ to amphibolite‐facies conditions. Fluid compositions change from aqueous inclusions in subgreenschist‐ and greenschist‐facies rocks to aqueous–carbonic inclusions in amphibolite‐facies rocks. The fluid composition is constant for each vein, across several fluid inclusion generations that record the growth history of the quartz crystals. Chemical solute geothermometry, fluid inclusion isochores, and constraints from fluid–mineral equilibria modeling were used to reconstruct the pressure–temperature conditions of the Alpine fissure veins and to compare them with the metamorphic path of their host rocks. The data demonstrate that fluids in the Aar massif were trapped close to the metamorphic peak whereas the fluids in the Penninic nappes record early cooling, consistent with retrograde alteration. The good agreement between the fluid–mineral equilibria modeling and observed fluid compositions and host‐rock mineralogy suggests that the fluid inclusions were entrapped under rock‐buffered conditions. The molar Cl/Br ratios of the fluid inclusions are below the seawater value and would require unrealistically high degrees of evaporation and subsequent dilution if they were derived from seawater. The halogen data may thus be better explained by interaction between metamorphic fluids and organic matter or graphite in metasedimentary rocks. The volatile content (CO2, sulfur) in the fluid inclusions increases systematically as function of the metamorphic grade, suggesting that the fluids have been produced by prograde devolatilization reactions. Only the fluids in the highest grade rocks were partly modified by retrograde fluid–rock interactions, and all major element compositions reflect equilibration with the local host rocks during the earliest stages of postmetamorphic uplift.  相似文献   

19.
Major corrosion has been found at depth in carbonate hydrocarbon reservoirs from different geologic provinces. Fluid inclusion microthermometry and stable isotopic compositions of carbonate cements, predating major corrosion, constrain the interpretation of the evolution of parental fluids during progressive burial and prior to the major corrosion event. Post‐major corrosion mineral paragenesis includes pyrite (‐marcasite), anhydrite, kaolinite (dickite) and fluorite. Although the post‐corrosion mineral paragenesis represents minor volumes of rock, it may provide valuable insights into the post‐corrosion brine chemistry. Using reactive transport numerical models, the roles of cooling and/or mixing of brines on corrosion have been evaluated as controls for dolomitization, deep burial corrosion and precipitation of the post‐corrosion mineral paragenesis. Modelling results show that cooling of deep‐seated fluids moving upward along a fracture may cause minor calcite dissolution and porosity generation. Significant dolomitization along a fracture zone and nearby host‐rock only occurs when deep‐seated fluids have high salinities (4 mol Cl kg?1 of solution) and Darcian flow rates are relatively high (1 m3 m?2 year?1). Only minor volumes of quartz and fluorite precipitate in the newly formed porosity. Moreover, modelling results cannot reproduce the authigenic precipitation of kaolinite (dickite at high temperatures) by cooling. As an alternative to cooling as a cause of corrosion, mixing between two brines of different compositions and salinities is represented by two main cases. One case consists of the flow up along a fracture of deep‐seated fluids with higher salinities than the fluid in the wall rock. Dolomite does not precipitate at a fracture zone. Nevertheless, minor volumes of dolomite are formed away from the fracture. The post‐corrosion mineral paragenesis can be partly reproduced, and the results are comparable to those obtained from cooling calculations. Minor volumes of quartz and fluorite are formed, and kaolinite‐dickite does not precipitate. The major outputs of this scenario are calcite dissolution and slight net increase in porosity. A second case corresponds to the mixing of low salinity deep‐seated fluids, flowing up along fractures, with high salinity brines within the wall rock. Calculations predict major dissolution of calcite and precipitation of dolomite. The post‐corrosion mineral paragenesis can be reproduced. High volumes of quartz, fluorite and kaolinite‐dickite precipitate and may even completely occlude newly formed porosity.  相似文献   

20.
A survey of soil erosion was conducted in Australia using the fallout radioisotope caesium‐137 as an indicator of topsoil redistribution. Two hundred and six sites were sampled, 100 within rotational cropping and horticultural use, 52 within uncultivated permanent pasture and forest, and 54 in rangelands. Average net soil losses were approximately equal for cultivated cropping lands and rangelands (ca. 5.5 t ha?1 yr?1), and just over 1 t ha?1 yr?1 for pasture and forest. The Mann Whitney U Test revealed that losses under cropping and rangeland conditions were significantly higher (p < 0.05) than under uncultivated pasture and forest. Soil loss was negatively correlated with mean annual rainfall and slope gradient, and positively correlated with slope length (Spearman's rank correlation). There was no correlation between rates of soil loss and a rainfall erosi‐vity index. An assessment of erosional events was provided by landholders for 104 sites, with their ranking being weakly but significantly correlated with soil loss estimates (r =+0.35). Sixty percent of sites had net soil losses greater than 1 t ha?1 yr?1, and 74% of sites had losses of more than 0.5 t ha?1 yr?1. This latter rate may be regarded as a limit for a tolerable level of soil loss. These high rates of soil loss have occurred since the mid‐1950s despite there being significant landholder awareness of the soil erosion hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号