首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipids are a broad group of naturally occurring molecules, which includes fats, oils, waxes, sterols, terpenes, fat‐soluble vitamins, monoglycerides, diglycerides, phospholipids and others. Lipids have been widely used in human history and they are often present in archaeological finds. In particular, in the field of medicine and cosmetics, lipids have been employed as base in the preparation of unguents, salves and balms. The characterization of these products and their degradation products induced by ageing is important for an understanding of the ancient pharmaceutical techniques and to assess the state of conservation. 1H‐NMR and, for the first time, 31P‐NMR spectroscopy have been applied to the characterization of such compounds. By derivatization of the samples with 2‐chloro‐4,4,5,5‐tetramethyl‐1,3,2‐dioxaphospholane, it is possible to recognize, quantify and evaluate the degradation degree of lipids in archaeological unguent samples. With this new approach, lipids have been recognized in 17th‐century archaeological ointments from the Aboca Museum. Moreover, severe hydrolysis and oxidation markers have been detected.  相似文献   

2.
3.
Identifying the origin of marble used in antiquity brings back to light details of the economic, social and political organization of classical societies, and characterizing in depth the chemistry of marble is key to discovering its provenance. Beyond X‐ray diffraction, which could reveal the presence of discriminant secondary crystalline phases and the quantification of accessory minerals combined with a multivariate analysis approach, solid‐state nuclear magnetic resonance (NMR) enables one to recognize the local structure arrangement of both crystalline and amorphous materials by looking at one or more selected atoms. In present paper targets the 13C nuclide, and thus the major component of marble, calcium carbonate. Whatever their geological origin, marbles 13C‐NMR spectra present only one resonance corresponding to the carboxyl function whose intensity and line width vary from one marble to another. If the variation of the NMR signal intensity observed is the result of great T1 variations (from 220 to 5300 s) and is linked to iron content, the line width reflects defects in the calcite crystal in which calcium has been replaced by another element such as magnesium, aluminium or strontium. The specific profile of the NMR signal has been used successfully to help determine the origin of some archaeological items.  相似文献   

4.
The archaeological discovery of the Acqualadrone rostrum (an offensive naval weapon mounted on the prow at the waterline), off the Italian coast near Messina in 2008, has led to the need for scientific research in order to plan the conservation treatment of this artefact. The discovery is exceptional because of the presence of a wooden section from the original ship. This paper describes the physico‐chemical characterization of a metallic and two wooden samples by inductively coupled plasma – optical emission spectroscopy, inductively coupled plasma – mass spectrometry, Fourier transform infrared spectroscopy, 13C {1H} cross‐polarization magic angle spinning NMR spectroscopy, energy‐dispersive X‐ray spectroscopy, gas chromatography – mass spectrometry and X‐ray diffraction. The results reveal the use of leaded bronze (Cu, 70%; Pb, 20%; Sn, 10%) in the manufacturing process of the alloy and the use of lead whose isotopic composition is referable to either Spanish or Cypriot mines. The analysis of the results relating to the wooden samples indicates their different state of preservation and, at least in some places, the spreading of caulking on the wood, probably using a vegetable resin.  相似文献   

5.
Understanding hydrothermal processes during production is critical to optimal geothermal reservoir management and sustainable utilization. This study addresses the hydrothermal (HT) processes in a geothermal research doublet consisting of the injection well E GrSk3/90 and production well Gt GrSk4/05 at the deep geothermal reservoir of Groß Schönebeck (north of Berlin, Germany) during geothermal power production. The reservoir is located between ?4050 to ?4250 m depth in the Lower Permian of the Northeast German Basin. Operational activities such as hydraulic stimulation, production (T = 150°C; Q = ?75 m3 h?1; C = 265 g l?1) and injection (T = 70°C; Q = 75 m3 h?1; C = 265 g l?1) change the HT conditions of the geothermal reservoir. The most significant changes affect temperature, mass concentration and pore pressure. These changes influence fluid density and viscosity as well as rock properties such as porosity, permeability, thermal conductivity and heat capacity. In addition, the geometry and hydraulic properties of hydraulically induced fractures vary during the lifetime of the reservoir. A three‐dimensional reservoir model was developed based on a structural geological model to simulate and understand the complex interaction of such processes. This model includes a full HT coupling of various petrophysical parameters. Specifically, temperature‐dependent thermal conductivity and heat capacity as well as the pressure‐, temperature‐ and mass concentration‐dependent fluid density and viscosity are considered. These parameters were determined by laboratory and field experiments. The effective pressure dependence of matrix permeability is less than 2.3% at our reservoir conditions and therefore can be neglected. The results of a three‐dimensional thermohaline finite‐element simulation of the life cycle performance of this geothermal well doublet indicate the beginning of thermal breakthrough after 3.6 years of utilization. This result is crucial for optimizing reservoir management. Geofluids (2010) 10 , 406–421  相似文献   

6.
The Upper Triassic Mercia Mudstone is the caprock to potential carbon capture and storage (CCS) sites in porous and permeable Lower Triassic Sherwood Sandstone reservoirs and aquifers in the UK (primarily offshore). This study presents direct measurements of vertical (kv) and horizontal (kh) permeability of core samples from the Mercia Mudstone across a range of effective stress conditions to test their caprock quality and to assess how they will respond to changing effective stress conditions that may occur during CO2 injection and storage. The Mercia samples analysed were either clay‐rich (muddy) siltstones or relatively clean siltstones cemented by carbonate and gypsum. Porosity is fairly uniform (between 7.4 and 10.7%). Porosity is low either due to abundant depositional illite or abundant diagenetic carbonate and gypsum cements. Permeability values are as low as 10?20 m2 (10nD), and therefore, the Mercia has high sealing capacity. These rocks have similar horizontal and vertical permeabilities with the highest kh/kv ratio of 2.03 but an upscaled kh/kv ratio is 39, using the arithmetic mean of kh and the harmonic mean of kv. Permeability is inversely related to the illite clay content; the most clay‐rich (illite‐rich) samples represent very good caprock quality; the cleaner Mercia Mudstone samples, with pore‐filling carbonate and gypsum cements, represent fair to good caprock quality. Pressure sensitivity of permeability increases with increasing clay mineral content. As pore pressure increases during CO2 injection, the permeability of the most clay‐rich rocks will increase more than carbonate‐ and gypsum‐rich rocks, thus decreasing permeability heterogeneity. The best quality Mercia Mudstone caprock is probably not geochemically sensitive to CO2 injection as illite, the cause of the lowest permeability, is relatively stable in the presence of CO2–water mixtures.  相似文献   

7.
This paper introduces improved methods for statistically assessing birth seasonality and intra‐annual variation in δ18O from faunal tooth enamel. The first method estimates input parameters for use with a previously developed parametric approach by C. Tornero et al. The second method uses a non‐parametric clustering procedure to group individuals with similar time‐series data and estimate birth seasonality. This method was successful in analysing data from a modern sample with known season of birth, as well as two heterogeneous archaeological data sets. Modelling indicates that the non‐parametric approach estimates birth seasonality more successfully than the parametric method when less of the tooth row is preserved. The new approach offers a high level of statistical rigour and flexibility in dealing with the time‐series data produced through intra‐individual sampling in isotopic analysis.  相似文献   

8.
S. SAKATA  T. MAEKAWA  S. IGARI  Y. SANO 《Geofluids》2012,12(4):327-335
Previous geochemical studies indicated that most natural gases dissolved in brines in Japan are of microbial origin, consisting of methane produced via carbonate reduction. However, some of those from gas fields in southwest Japan contain methane relatively enriched in 13C, whose origin remains to be clarified. To address this issue, chemical and isotopic analyses were performed on natural gases and brines from the gas fields in Miyazaki and Shizuoka prefectures, southwest Japan. Methane isotopic signatures (δ13C ≈ ?68‰ to ?34‰ VPDB; δ2H ≈ ?183‰ to ?149‰ VSMOW) suggest that these gases are of microbial (formed via carbonate reduction) or of mixed microbial and thermogenic origin. The relatively high δ2H‐CH4 values and their relationship with the δ2H‐H2O values argue against the possibility of their formation via acetate fermentation. The δ13C‐CO2 values (≈?5‰), together with the slope of the correlation between δ2H‐CH4 and δ13C‐CH4δ2H‐CH4δ13C‐CH4 ≈ 1), contradict the possibility of their formation via carbonate reduction followed by partial oxidation by methanotrophs. The 3He/4He ratios of the gases from Miyazaki (≈0.11–1.3 Ra) and their low correlation with δ13C‐CH4 values do not support an abiogenic origin. It is inferred therefore that the high δ13C‐CH4 values of natural gases dissolved in brines from gas fields in southwest Japan are indications of the contribution of thermogenic hydrocarbons, although whether abiogenic hydrocarbons contribute significantly to the gases from Shizuoka requires further investigation. This study has clarified that, for the future exploration of natural gases in southwest Japan, we should adopt the strategies for conventional thermogenic gas accumulations, such as checking the content, type and maturity of organic matter in the underlying sedimentary rocks.  相似文献   

9.
Gas breakthrough experiments on fine-grained sedimentary rocks   总被引:1,自引:0,他引:1  
The capillary sealing efficiency of fine‐grained sedimentary rocks has been investigated by gas breakthrough experiments on fully water saturated claystones and siltstones (Boom Clay from Belgium, Opalinus Clay from Switzerland and Tertiary mudstone from offshore Norway) of different lithological compositions. Sand contents of the samples were consistently below 12%, major clay minerals were illite and smectite. Porosities determined by mercury injection lay between 10 and 30% while specific surface areas determined by nitrogen adsorption (BET method) ranged from 20 to 48 m2 g ? 1. Total organic carbon contents were below 2%. Prior to the gas breakthrough experiments the absolute (single phase) permeability (kabs) of the samples was determined by steady state flow tests with water or NaCl brine. The kabs values ranged between 3 and 550 nDarcy (3 × 10?21 and 5.5 × 10?19 m2). The maximum effective permeability to the gas‐phase (keff) measured after gas breakthrough on initially water‐saturated samples extended from 0.01 nDarcy (1 × 10?23 m2) up to 1100 nDarcy (1.1 × 10?18 m2). The residual differential pressures after re‐imbibition of the water phase, referred to as the ‘minimum capillary displacement pressures’ (Pd), ranged from 0.06 to 6.7 MPa. During the re‐imbibition process the effective permeability to the gas phase decreases with decreasing differential pressure. The recorded permeability/pressure data were used to derive the pore size distribution (mostly between 8 and 60 nm) and the transport porosity of the conducting pore system (10‐5–10‐2%). Correlations could be established between (i) absolute permeability coefficients and the maximum effective permeability coefficients and (ii) effective or absolute permeability coefficients and capillary sealing efficiency. No correlation was found between the capillary displacement pressures determined from gas breakthrough experiments and those derived theoretically by mercury injection.  相似文献   

10.
Numerical simulations of multiphase CO2 behavior within faulted sandstone reservoirs examine the impact of fractures and faults on CO2 migration in potential subsurface injection systems. In southeastern Utah, some natural CO2 reservoirs are breached and CO2‐charged water flows to the surface along permeable damage zones adjacent to faults; in other sites, faulted sandstones form barriers to flow and large CO2‐filled reservoirs result. These end‐members serve as the guides for our modeling, both at sites where nature offers ‘successful’ storage and at sites where leakage has occurred. We consider two end‐member fault types: low‐permeability faults dominated by deformation‐band networks and high‐permeability faults dominated by fracture networks in damage zones adjacent to clay‐rich gouge. Equivalent permeability (k) values for the fault zones can range from <10?14 m2 for deformation‐band‐dominated faults to >10?12 m2 for fracture‐dominated faults regardless of the permeability of unfaulted sandstone. Water–CO2 fluid‐flow simulations model the injection of CO2 into high‐k sandstone (5 × 10?13 m2) with low‐k (5 × 10?17 m2) or high‐k (5 × 10?12 m2) fault zones that correspond to deformation‐band‐ or fracture‐dominated faults, respectively. After 500 days, CO2 rises to produce an inverted cone of free and dissolved CO2 that spreads laterally away from the injection well. Free CO2 fills no more than 41% of the pore space behind the advancing CO2 front, where dissolved CO2 is at or near geochemical saturation. The low‐k fault zone exerts the greatest impact on the shape of the advancing CO2 front and restricts the bulk of the dissolved and free CO2 to the region upstream of the fault barrier. In the high‐k aquifer, the high‐k fault zone exerts a small influence on the shape of the advancing CO2 front. We also model stacked reservoir seal pairs, and the fracture‐dominated fault acts as a vertical bypass, allowing upward movement of CO2 into overlying strata. High‐permeability fault zones are important pathways for CO2 to bypass unfaulted sandstone, which leads to reduce sequestration efficiency. Aquifer compartmentalization by low‐permeability fault barriers leads to improved storativity because the barriers restrict lateral CO2 migration and maximize the volume and pressure of CO2 that might be emplaced in each fault‐bound compartment. As much as a 3.5‐MPa pressure increase may develop in the injected reservoir in this model domain, which under certain conditions may lead to pressures close to the fracture pressure of the top seal.  相似文献   

11.
Br/Cl ratios of hydrothermal fluids are widely used as geochemical tracers in marine hydrothermal systems to prove fluid phase separation processes. However, previous results of the liquid–vapour fractionation of bromine are ambiguous. Here we report new experimental results of the liquid–vapour fractionation of bromine in the system H2O–NaCl–NaBr at 380–450°C and 22.9–41.7 MPa. Our data indicate that bromine is generally more enriched than chlorine in the liquid phase. Calculated exchange coefficients KD(Br‐Cl)liquid‐vapour for the reaction Brvapour + Clliquid = Brliquid + Clvapour are between 0.94 ± 0.08 and 1.66 ± 0.14 within the investigated P–T range. They correlate positively with DClliquid‐vapour and suggest increasing bromine–chlorine fractionation with increasing opening of the liquid–vapour solvus, i.e. increasing distance to the critical curve in the H2O–NaCl system. An empirical fit of the form KD(Br‐Cl)liquid‐vapour = a*ln[b*(DClliquid‐vapour?1) + e1/a] yields a = 0.349 and b = 1.697. Based on this empirical fit and the well‐constrained phase relations in the H2O–NaCl system we calculated the effect of fluid phase separation on the Br/Cl signature of a hydrothermal fluid with initial seawater composition for closed and open adiabatic ascents along the 4.5 and 4.8 J g?1 K?1 isentropes. The calculations indicate that fluid phase separation can significantly alter the Br/Cl ratio in hydrothermal fluids. The predicted Br/Cl evolutions are in accord with the Br/Cl signatures in low‐salinity vent fluids from the 9 to 10°N East Pacific Rise.  相似文献   

12.
At Ocean Drilling Program Site 997 in Blake Ridge gas‐hydrate field in West Atlantic, pore‐water studies revealed a pronounced downward depletion of the heavy chlorine isotope to nearly ?4‰δ37Cl at approximately 750 m below sea floor (mbsf) associated with a 10% downward chlorinity decrease. This is one of the stronger 37Cl depletions hitherto reported for marine pore waters. Chlorinity reductions in hydrate‐bearing sediments commonly result from fresh‐water release by hydrate melting. However, in situ measurements at Site 997 suggest that >50% of the chlorinity reduction occurred prior to hydrate dissociation. Modeling the chlorinity profile shows that advection of a strongly 37Cl‐depleted, low‐chlorinity water (506 mm ) from below the drilled sequence can explain the reduction prior to sampling. Fitting the model to the δ37Cl curve yielded an advection rate of 0.18 mm year?1. Diffusive mixing with near‐0‰‐δ37Cl paleo‐seawater with maximum chlorinity at shallow subsurface depths (561 mm at approximately 20 mbsf) produced the smooth, steady trend. Separating that part of the freshening caused by advection and diffusion from that due to hydrate dissociation allowed estimation of average hydrate concentrations of 3.8% of the pore space (up to 24.5% in hydrate‐rich layers; near‐100% in rare massive hydrate layers). The deep‐seated source of the 37Cl‐depleted, low‐chlorinity water remains unknown and might be located below the sedimentary section in the oceanic basement.  相似文献   

13.
Stable oxygen isotopes from estuarine bivalve carbonate from Saxidomus gigantea were analysed combined with high‐resolution sclerochronology from modern and archaeological shells from British Columbia, Canada, to determine the seasonality of shellfish collection from the archaeological site of Namu. The combination of high‐resolution sclerochronology and a micro‐milled sampling strategy for δ18O analysis permits a precise estimate of archaeological seasonality, because seasonal freshwater influxes and changes in temperature have dual effects on the δ18O value of the shell. Sclerochronological analysis identifies the timing and duration of growth that is temporally aligned to stable oxygen isotope results, since δ18Oshell appears to be strongly influenced by seasonal inputs of very low δ18O snowmelt‐water from adjacent coastal mountain ranges. The results show that shellfish were collected year‐round at this site over a 4000‐year period, and these data combined with other zooarchaeological lines of evidence support the interpretation of year‐round occupation.  相似文献   

14.
Stable nitrogen isotopes have been used to reconstruct infant feeding practices as nursing infants have elevated δ15N ratios compared with their mothers. However, infancy is also a time of rapid growth, which may alter nitrogen isotope diet‐to‐tissue spacing. Several studies have documented a decrease in δ15N during growth in tissues with relatively fast accretion rates. This study investigates the effect that the growth of long bones, via collagen accretion, has on δ15N ratios. Long bones from individuals aged seven to nineteen years were obtained from a protohistoric ossuary in Ontario, Canada. Analysis of juveniles and adolescents permitted the examination of growth in a group who were not also nursing. It is concluded that a nitrogen isotope growth effect is not detectable in bone collagen from juveniles and adolescents, because: (1) δ15N ratios are not significantly different among the epiphyses, metaphyses and diaphysis of a growing long bone; (2) δ15N ratios are not significantly different between faster‐growing versus slower‐growing metaphyses; and (3) δ15N ratios are not significantly different between bones (or areas of a bone) that are still undergoing growth, versus bones that have ceased growing. The relatively slow speed of collagen accretion may explain why a growth effect is not manifested. Ultimately this research lends support to the use of nitrogen isotopes from bone collagen for infant feeding reconstructions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Structural, petrographic, and isotopic data for calcite veins and carbonate host‐rocks from the Sevier thrust front of SW Montana record syntectonic infiltration by H2O‐rich fluids with meteoric oxygen isotope compositions. Multiple generations of calcite veins record protracted fluid flow associated with regional Cretaceous contraction and subsequent Eocene extension. Vein mineralization occurred during single and multiple mineralization events, at times under elevated fluid pressures. Low salinity (Tm = ?0.6°C to +3.6°C, as NaCl equivalent salinities) and low temperature (estimated 50–80°C for Cretaceous veins, 60–80°C for Eocene veins) fluids interacted with wall‐rock carbonates at shallow depths (3–4 km in the Cretaceous, 2–3 km in the Eocene) during deformation. Shear and extensional veins of all ages show significant intra‐ and inter‐vein variation in δ18O and δ13C. Carbonate host‐rocks have a mean δ18OV‐SMOW value of +22.2 ± 3‰ (1σ), and both the Cretaceous veins and Eocene veins have δ18O ranging from values similar to those of the host‐rocks to as low as +5 to +6‰. The variation in vein δ13CV‐PDB of ?1 to approximately +6‰ is attributed to original stratigraphic variation and C isotope exchange with hydrocarbons. Using the estimated temperature ranges for vein formation, fluid (as H2O) δ18O calculated from Cretaceous vein compositions for the Tendoy and Four Eyes Canyon thrust sheets are ?18.5 to ?12.5‰. For the Eocene veins within the Four Eyes Canyon thrust sheet, calculated H2O δ18O values are ?16.3 to ?13.5‰. Fluid–rock exchange was localized along fractures and was likely coincident with hydrocarbon migration. Paleotemperature determinations and stable isotope data for veins are consistent with the infiltration of the foreland thrust sheets by meteoric waters, throughout both Sevier orogenesis and subsequent orogenic collapse. The cessation of the Sevier orogeny was coincident with an evolving paleogeographic landscape associated with the retreat of the Western Interior Seaway and the emergence of the thrust front and foreland basin. Meteoric waters penetrated the foreland carbonate thrust sheets of the Sevier orogeny utilizing an evolving mesoscopic fracture network, which was kinematically related to regional thrust structures. The uncertainty in the temperature estimates for the Cretaceous and Eocene vein formation prevents a more detailed assessment of the temporal evolution in meteoric water δ18O related to changing paleogeography. Meteoric water‐influenced δ18O values calculated here for Cretaceous to Eocene vein‐forming fluids are similar to those previously proposed for surface waters in the Eocene, and those observed for modern‐day precipitation, in this part of the Idaho‐Montana thrust belt.  相似文献   

16.
Mineral deposits in the Cupp‐Coutunn/Promeszutochnaya cave system (Turkmenia, central Asia) record a phase of hydrothermal activity within a pre‐existing karstic groundwater conduit system. Hydrothermal fluids entered the caves through fault zones and deposited sulphate, sulphide and carbonate minerals under phreatic conditions. Locally, intense alteration of limestone wall rocks also occurred at this stage. Elsewhere in the region, similar faults contain economic quantities of galena and elemental sulphur mineralization. Comparisons between the Pb and S isotope compositions of minerals found in cave and ore deposits confirm the link between economic mineralization and hydrothermal activity at Cupp‐Coutunn. The predominance of sulphate mineralization in Cupp‐Coutunn implies that the fluids were more oxidized in the higher permeability zone associated with the karst aquifer. A slight increase in the δ34S of sulphate minerals and a corresponding δ34S decrease in sulphides suggest that partial isotopic equilibration occurred during oxidation. Carbonate minerals indicate that the hydrothermal fluid was enriched in 18O (δ18OSMOW ~ + 10‰) relative to meteoric groundwater and seawater. Estimated values for δ13CDIC (δ13CPDB ~ ? 13‰) are consistent with compositions expected for dissolved inorganic carbon (DIC) derived from the products of thermal decomposition of organic matter and dissolution of marine carbonate. Values derived for δ13CDIC and δ18Owater indicate that the hydrothermal fluid was of basinal brine origin, generated by extensive water–rock interaction. Following the hydrothermal phase, speleothemic minerals were precipitated under vadose conditions. Speleothemic sulphates show a bimodal sulphur isotope distribution. One group has compositions similar to the hydrothermal sulphates, whilst the second group is characterized by higher δ34S values. This latter group may either record the effects of microbial sulphate reduction, or reflect the introduction of sulphate‐rich groundwater generated by the dissolution of overlying evaporites. Oxygen isotope compositions show that calcite speleothems were precipitated from nonthermal groundwater of meteoric origin. Carbonate speleothems are relatively enriched in 13C compared to most cave deposits, but can be explained by normal speleothem‐forming processes under thin, arid‐zone soils dominated by C4 vegetation. However, the presence of sulphate speleothems, with isotopic compositions indicative of the oxidation of hydrothermal sulphide, implies that CO2 derived by reaction of limestone with sulphuric acid (‘condensation corrosion’) contributed to the formation of 13C‐enriched speleothem deposits.  相似文献   

17.
Calcite veins in Paleoproterozoic granitoids on the Baltic Shield are the focus of this study. These veins are distinguished by their monomineralic character, unusual thickness and closeness to Neoproterozoic dolerite dykes and therefore have drawn attention. The aim of this study was to define the source of these veins and to unravel their isotopic and chemical nature by carrying out fine‐scale studies. Seven calcite veins covering a depth interval of 50–420 m below the ground surface and composed of breccias or crack‐sealed fillings typically expressing syntaxial growth were sampled and analysed for a variety of physicochemical variables: homogenization temperature (Th) and salinity of fluid inclusions, and stable isotopes (87Sr/86Sr, 13C/12C, 18O/16O), trace‐element concentrations (Fe, Mn, Mg, Sr, rare earth elements) and cathodoluminescence (CL) of the solid phase. The fluid‐inclusion data show that the calcites were precipitated mainly from relatively low‐temperature (Th = 73–106°C) brines (13.4–24.5 wt.% CaCl2), and the 87Sr/86Sr is more radiogenic than expected for Rb‐poor minerals precipitated from Neoproterozoic fluids. These features, together with the distribution of δ13C and δ18O values, provide evidence that the calcite veins are not genetic with the nearby Neoproterozoic dolerite dykes, but are of Paleozoic age and were precipitated from warm brines expressing a rather large variability in salinity. Whereas the isotopic and chemical variables express rather constant average values among the individual veins, they vary considerably on fine‐scale across individual veins. This has implications for understanding processes causing calcite‐rich veins to form and capture trace metals in crystalline bedrock settings.  相似文献   

18.
Most researchers in the Proterozoic eastern Mt Isa Block, NW Queensland, Australia, favour magmatic fluid and salt sources for sodic‐(calcic) alteration and iron oxide–copper–gold mineralization. Here we compare spatial, mineralogic and stable isotope data from regional alteration assemblages with magmatic and magmatic‐hydrothermal interface rocks in order to track chemical and isotopic variations in fluid composition away from inferred fluid sources. Tightly clustered δ18O values for magnetite, quartz, feldspar and actinolite for igneous‐hosted samples reflect high temperature equilibration in the magmatic‐hydrothermal environment. In contrast, these minerals record predominantly higher δ18O values in regional alteration and Cu–Au mineralization. This dichotomy reflects partial equilibration with isotopically heavier wallrocks and slightly lower temperatures. Increases in Si concentrations of metasomatic amphiboles relative to igneous amphiboles in part reflect cooling of metasomatic fluids away from igneous rocks. Variations in XMg for metasomatic amphiboles indicate local wallrock controls on amphibole chemistry, while variations in XCl/XOH ratios for amphiboles (at constant XMg) indicate variable aH2O/aHCl ratios for metasomatic fluids. Biotite geochemistry also reflects cooling and both increases and decreases in aH2O/aHCl for fluids away from plutonic rocks. Decreased aH2O/aHCl ratios for metasomatic fluids reflect in part scavenging of chlorine out of meta‐evaporite sequences, although this process requires already saline fluids. Local increases in aH2O/aHCl ratios, as well as local decreases in δ18O values for some minerals (most notably haematite and epithermal‐textured quartz), may indicate ingress of low salinity, low δ18O fluids of possible meteoric origin late in the hydrothermal history of the region. Taken together, our observations are most consistent with predominantly magmatic sources for metasomatic fluids in the eastern Mt Isa Block, but record chemical and isotopic variations along fluid flow paths that may be important in explaining some of the diversity in alteration and mineralization styles in the district.  相似文献   

19.
The production of hydrogen by serpentinization in ultramafic‐hosted hydrothermal systems is simulated by coupling thermodynamic and dynamic modeling in the framework of a thermo‐hydraulic single‐pass model where a high‐temperature hydrothermal fluid moves preferentially through a main canal of high permeability. The alteration of ultramafic rocks is modeled with a first‐order kinetic formulation, wherein the serpentinization rate coefficient, Kr, takes the form: Kr = A exp(?α(T ? T0)2). In this formulation, α determines the temperature range of the reaction and T0 is the temperature at which the serpentinization rate reaches its maximum. This model is applied to the Rainbow hydrothermal system, which is situated on the Mid‐Atlantic Ridge, and characterized by a high temperature, a high mass flux, and a very high hydrogen concentration. The results show that a first‐order kinetic law gives a useful representation of the kinetics of serpentinization. The estimated value for the parameter A in the temperature‐dependent formulation of the serpentinization rate coefficient lies in the range (1–5) × 10?11 s?1. This effective parameter is several orders of magnitude lower than the values obtained from small grain‐size experiments, but in agreement with other published modeling studies of natural systems. Numerical simulations show that the venting site is able to produce the observed high concentration of hydrogen during the whole continuous lifetime of the Rainbow site.  相似文献   

20.
A. POURNOU 《Archaeometry》2008,50(1):129-141
This study investigates the residual chemical composition of waterlogged archaeological lignocellulosic material found in Greece. Hazelnut pericarps and oak wood found in a 16th‐century wreck, along with endocarps of olives dated at 300 bc , were examined. 13C CP/MAS NMR was applied to compare fresh and waterlogged archaeological materials. Results show qualitative alterations in their composition. The virtual absence of peaks at ~21 ppm and ~173 ppm, corresponding to hemicelluloses in all archaeological materials, indicates that these constituents can be an important indicator in assessing the type and degree of deterioration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号