首页 | 本学科首页   官方微博 | 高级检索  
     


Geostatistical Smoothing of Areal Data: Mapping Employment Density with Factorial Kriging
Authors:Nicholas N. Nagle
Affiliation:Department of Geography, University of Tennessee, Knoxville, TN
Abstract:This article summarizes area-to-point (ATP) factorial kriging that allows the smoothing of aggregate, areal data into a continuous spatial surface. Unlike some other smoothing methods, ATP factorial kriging does not suppose that all of the data within an area are located at a centroid or other arbitrary point. Also, unlike some other smoothing methods, factorial kriging allows the user to utilize an autocovariance function to control the smoothness of the output. This is beneficial because the covariance function is a physically meaningful statement of spatial relationship, which is not the case when other spatial kernel functions are used for smoothing. Given a known covariance function, factorial kriging gives the smooth surface that is best in terms of minimizing the expected mean squared prediction error. I present an application of the factorial kriging methodology for visualizing the structure of employment density in the Denver metropolitan area.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号