首页 | 官方网站   微博 | 高级检索  
     


Freezing and melting behaviors of H2O‐NaCl‐CaCl2 solutions in fused silica capillaries and glass‐sandwiched films: implications for fluid inclusion studies
Authors:H Chu  G Chi  I‐M Chou
Affiliation:1. Department of Geology, University of Regina, Regina, SK, Canada;2. Laboratory for Experimental Study Under Deep‐sea Extreme Conditions, Sanya Institute of Deep‐sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
Abstract:Fluid inclusions of the H2O‐NaCl‐CaCl2 system are notorious for their metastable behavior during cooling and heating processes, which can render microthermometric measurement impossible or difficult and interpretation of the results ambiguous. This study addresses these problems through detailed microscopic examination of synthetic solutions during cooling and warming runs, development of methods to enhance nucleation of hydrates, and comparison of microthermometric results with different degrees of metastability with values predicted for stable conditions. Synthetic H2O‐NaCl‐CaCl2 solutions with different NaCl/(NaCl + CaCl2) ratios were prepared and loaded in fused silica capillaries and glass‐sandwiched films for microthermometric studies; pure solutions were used with the capillaries to simulate fluid inclusions, whereas alumina powder was added in the solutions to facilitate ice and hydrate crystallization in the sandwiched samples. The phase changes observed and the microthermometric data obtained in this study have led to the following conclusions that have important implications for fluid inclusion studies: (i) most H2O‐NaCl‐CaCl2 inclusions that appear to be completely frozen in the first cooling run to ?185°C actually contain large amounts of residual solution, as also reported in some previous studies; (ii) inability of H2O‐NaCl‐CaCl2 inclusions to freeze completely may be related to their composition (low NaCl/(NaCl + CaCl2) ratios) and lack of solid particles; (iii) crystallization of hydrates, which is important for cryogenic Raman spectroscopic studies of fluid inclusion composition, can be greatly enhanced by finding an optimum combination of cooling and warming rates and temperatures; and (iv) even if an inclusion is not completely frozen, the melting temperatures of hydrohalite and ice are still valid for estimating the fluid composition.
Keywords:cryogenic Raman spectroscopy  fluid inclusions  fused silica capillaries  H2O‐NaCl‐CaCl2  hydrates  microthermometry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号